

ILISP documentation
APPS for CAD/CAM/NESTING on waterjet cutting machines

!
Version 2014.2.486
Sept 18, 2014
!
!
!
!
!
© IGEMS AB!
BorŒs!
Sweden!
!
!
Apps 2 ...
ILISP Functions 5 ..
Geometrical example 30 ...
Variables 32 ..
Dynamic Dialogs 33 ...
ILISP command to control the CAD system 50 ..
ILISP functions for the CAM module 55 ..
Lead script 56 ..
Reports 57 ..
Conditional sections 61 ...
Postprocessor events !
Updated 2013-06-04 64 ...
TUBE cutting 89 ...
Other postprocessor functions 94 ...
Interfacing ILIPS with a .NET language 95...

Apps

!
This information describe how to develop special applications and commands for IGEMS by using the
programming language ILISP as developer tools. ILISP is normal text files that can be added to the system by
the function Load app

Load app

!
Start this command and the following dialog box is shown:

!
Press the "Add" button and select the LSP file to add. A small sample is in the APP folder in IGEMS program
directory.
Select É.\APP\ANIMALDEMO\ANIMALDEMO.LSP

!
Give the application a name.

!
The applications can be grouped together on the menu.

! 2

!
Press the "Image" button and select an image in the same folder as the LSP file. Click "OK to load the first
application.

!
This is just an example on how to load apps.

!

Script editor

!
ILISP has an inbuilt editor to makes it possible to create and edit ILISP files.

! 3

!
The first area is for writing the code, the second area is a console where you can type and check ILISP
functions.

!
The console area can be minimized by clicking on the button above.

!
By setting the marker on a reserved ILISP word and press F1 or the Help button you can view a description of
all ILISP commands.

! 4

ILISP Functions
!!
Data types in ILISP
ILISP supports following data types:
* lists
* symbols
* strings
* real numbers
* integers
* file descriptors
* subrs (built-in functions) !!
ILISP provides numerous predefined functions. Each function is called by giving its name (upper or lower case)
as the first element of a list, with the arguments to that function (if any).

(- <number> <number> ...)
This function subtracts the second <number> from the first and returns the difference. If more than two
<number> are given, the sum of the second through last is subtracted from the first, and the final result is
returned. If only one <number> is given, the result of subtracting it from zero is returned. This function may be
used with reals or integers.

(- 50 40) returns 10 !
(- 40 40.0 2) returns 8.0 !
(- 50 40.0 2.5) returns 7.5 !
(- 8) returns -8 !
(- -8) returns 8

(* <number> <number> ...)
This function returns the product of all <number>. It may be used with reals or integers.

(* 2 3) returns 6 !
(* 2 3 4.0) returns 24

 (/ <number> <number> ...)
This function divides the first <number> by the second and returns the quotient. If more than two numbers are
given, the first number is divided by the product of the second through last, and the final quotient is returned.
This function may be used with reals or integers.

(/ 100 2) returns 50 !
(/ 120 2.0) returns 60.0 !
(/ 200 20 2.0) returns 5.0

(/= <atom1> <atom2>)
This is the "not equal to" relational function. It returns T if <atom1> is not numerically equal to <atom2> and
nil if the two atoms are numerically equal. The function is valid for numbers and strings.

(/= 12 12) returns nil !
(/= 22 4.0) returns T !
(/= "ABC" "ABC") returns nil !
(/= "yes" "no") returns T !
(/= "text" 12) returns T

! 5

(+ <number> <number> ...)
This function returns the sum of all <number>. It may be used with reals or integers. If all the <number> are
integers, the result will be an integer; if any of the <number> are realÕs, the integers will be promoted to realÕs
and the result will be a real.

(+ 1 2) return 3 !
(+ 1 2 3 4.5) return 10.5 !
(+ 1 2 3 4.0) return 10

(< <atom> <atom> ...)
This is the "less than" relational function. It returns T if the first <atom> is numerically less than the second
and nil otherwise. If more than two atoms are given, T is returned if each atom is less than the <atom> to its
right. The function is valid for numbers and strings.

(< 22 21) returns nil !
(< 10 20) returns T !
(< 1 2 3) returns T !
(< 3 1 2) returns nil !
(< "a" "b") returns T

(<= <atom> <atom> ...)
This is the "less than or equal to" relational function. It returns T if the first <atom> is numerically less than or
equal to the second, and nil otherwise. If more than two atoms are given, T is returned if each atom is less
than or equal to the <atom> to its right. The function is valid for numbers and strings.

(<= 10 11) returns T !
(<= 99 50.0) returns nil !
(<= 10 10.0 11) returns T !
(<= 99 1 2 3) returns nil !
(<= "a" "A") returns T !
(<= "AB" "AC") returns T !
(<= "a" "b" "a") returns nil

(= <atom> <atom> ...)
This is the "equal to" relational function. It returns T if all the specified atoms are numerically equal, and nil
otherwise. This function is valid for numbers and strings.

(= 18.0 18) returns T !
(= 42 19) returns nil !
(= "ABC" "abc") returns nil !
(= "lisp" 14.78) returns nil

(> <atom> <atom> ...)
This is the "greater than" relational function. It returns T if the first <atom> is numerically greater than the
second and nil otherwise. If more than two atoms are given, T is returned if each atom is greater than the
<atom> to its right. The function is valid for numbers and strings.

(> 19 17) returns T !
(> 1 20.0) returns nil !
(> 5 3 1) returns T !
(> "A" "B") returns nil !
(> "a" "A") returns T

(>= <atom> <atom> ...)
This is the "greater than or equal to" relational function. It returns T if the first <atom> is numerically greater
than or equal to the second and nil otherwise. If more than two atoms are given, T is returned if each atom is
greater than or equal to the <atom> to its right. The function is valid for numbers and strings.

! 6

(>= 80.0 14) returns T !
(>= 10 110.0) returns nil !
(>= 11.1 10.2 4) returns nil !
(>= "B" "A") returns T

(1- <number>)
This function returns <number> reduced by 1,<number> may be a real or an integer.

(1- -5) returns -6 !
(1- 17.5) returns 16.5

(1+ <number>)
This function returns <number> increased by 1 <number> may be a real or an integer.

(1+ 12) returns 13 !
(1+ 99.0) returns 100.0

(ABS <number>)
This function returns the absolute value of <number>, <number> may be a real or an integer.

(ABS 44) returns 44 !
(ABS -72.2) returns 72.2

(ACOS <number>)
This function returns the result of the inverse cosine function as radians.

(ACOS (/ 100.0 107.7)) returns 0.38499

For more information see the Geometrical example.

(ALERT <string>)
This function shows a message box with the text <string>

(ALERT "Press Enter")

(AND <expr> ...)
This function returns nil if any of the expressions evaluate to nil, otherwise it returns T.

(AND 20.0 -1 T "A") returns T !
(AND 1 T nil) returns nil

The function is often used together with the CASE or IF function.

(ANGLE <ptl> <pt2>)
This function returns the angle between the two points. The result is returned in radians, with angles increasing
in the counterclockwise direction. Zero degree is in IGEMS X positive direction.

(SETQ pt1 (LIST 0.0 0.0)) !
(SETQ pt2 (LIST 100.0 50.0)) !
(ANGLE pt1 pt2) returns 0.463648 !
(ANGLE pt2 pt1) returns 3.60524

For more information see the Geometrical example.

(ANGDIFF <angle1> <angle2>)
The function takes two angles in radians and returns the shortest difference between the angles. The result is
always a real value between ÐPI to +PI.

! 7

(SETQ a1 PI) !
(SETQ a2 (- PI)) !
(ANGDIFF a1 a2) returns 0

(SETQ a3 (* PI 7)) !
(ANGDIFF a3 a1) returns 0

(ANGDIFF 0.1 -0.1) returns -0.2 !
(ANGDIFF -0.1 0.1) returns 0.2 !
(ANGDIFF 3.14 2) returns -1.14

For more information see the Geometrical example.

(ANGTOS <angle> <precision> [raw])
The function takes <angle> (a real, in radians) and returns it edited into a string. The argument <precision>
control the number of digits. If the optional argument [raw] is T then the function can returns also negative
values. If the argument [raw] is omitted or nil then the function returns only positive angles between 0 to 360.

(ANGTOS PI 3) returns "180.000" !
(ANGTOS (- PI) 0) returns "180" !
(ANGTOS (- PI) 0 T) returns "-180" !
(ANGTOS (* PI 4) 1 nil) returns "0.0" !
(ANGTOS (* PI 4) 1 T) returns "720.0" !
(SETQ pt1 (LIST 0.0 0.0)) !
(SETQ pt2 (LIST 0.0 100.0)) !
(SETQ a (ANGLE pt1 pt2)) !
(ANGTOS a 3) returns "90.000" !
(ANGTOS a 1) returns "90.0"

(APPEND <expr> ...)
This function takes any number of lists <expr> and runs them together as one list.

(APPEND (LIST a b) (LIST 1 d)) returns (A B 1 D) !
(APPEND '((a) (b)) '((c d))) returns ((A) (B) (C) (D))

(APPLY <function> <list>)
Executes the function specified by <function> with the arguments given by <list>.

(APPLY '+ '(9 5 3)) returns 17 !
(APPLY 'STRCAT (LIST "A" "b" "c" "-123")) returns "AbC-123"

APPLY works with both built-in functions (subrs) and user-defined functions (those created with either DEFUN
or LAMBDA).

(ASCII <string>)
This function returns the conversion of the first character of <string> into its Unicode character code (an
integer).

(ASCII "A") returns 65 !
(ASCII "-") returns 45 !
(ASCII "6") returns 54 !
(ASCII "ABCDE") returns 65

(ASIN <number>)
This function returns the result of the inverse sinus function as radians.

(ASIN (/ 40.0 107.7)) returns 0.38499

For more information see the Geometrical example.

! 8

(ASSOC <item> <associationlist>)
This function searches the association list for <item> as the key element and returns the entry. If <item> is not
found as a key in associationlist then the function returns nil.

(SETQ alist (LIST (LIST "JAN" 31) (LIST "FEB" 28) (LIST "MAR" 31) (LIST "APR"
30))) !
(ASSOC "JAN" alist) returns ("JAN" 31) !
(ASSOC "APR" alist) returns ("APR" 30) !
(ASSOC "JUN" alist) returns nil

(ATAN <num1> [<num2>])
If <num2> is not supplied, ATAN returns the arctangent of <num1> in radians. <Num1> can be negative. The
range of angles returned is from -PI to +PI radians.

(ATAN 0.5) returns 0.463648 !
(ATAN -1.0) returns -0.785398 !
(ATAN 1.0) returns 0.785398

If both <num1> and <num2> are supplied, the arctangent of <num1/<num2> is returned, in radians. If
<num2> is zero, an angle of plus or minus 1.570796 radians (+90¡ or -90¡) is returned, depending on the sign
of <num1>

(ATAN 2.0 3.0) returns 0.588003 !
(ATAN 2.0 -3.0) returns 2.55359 !
(ANGTOS (ATAN 2.0 -3.0) 4) returns "146.3099" !
(ATAN 1.0 0.0) returns 1.5708

For more information see the Geometrical example.

(ATOF <string>)
This function converts a string to a real value.

(ATOF "-44") returns -44.0 !
(ATOF "0") returns 0.0 !
(ATOF "TEXT") returns 0.0 !
(ATOF "123.5TEXT") returns 123.5

(ATOI <string>)
This function converts a string to an integer.

(ATOI "9.5") returns 9 !
(ATOI "-44") returns -44 !
(ATOI "TEXT") returns 0

(ATOM <item>)
This function returns nil if <item> is a list and T otherwise. Anything that's not a list is considered an atom.

(ATOM nil) returns T !
(ATOM T) returns T !
(ATOM "TEXT") returns T !
(ATOM (LIST 1 2)) return nil !
(ATOM '+) return T

(ATOMS-FAMILY <format> [<search-list>])
This function returns a list with all symbol names. If the <format> value is 0 then the list is a list of symbol
names. If the <format> value is 1 then the symbol name are converted to strings. The <search-list> should be
a list of strings that specify the symbol names you want atoms-family to search for.

! 9

(ATOMS-FAMILY 0) returns (+ - * / = APPEND ASCII ...) !
(ATOMS-FAMILY 1) returns ("+" "-" "*" "/" ...) !
(ATOMS-FAMILY 1 (LIST "+" "NOTEXIST"))) returns ("+" "nil")

(BEEP [condition [sound]])
This function plays one of windows standard sound. The condition must be a non nil value if the sound should
be used.
The function returns the condition value. If no condition value is used then the function return T.
If no sound information is given then the function use sound number 2.
The sound value is an integer with following meaning.

Note! The sound may differ from the information above since the sound can be changed in the control panel.

(BEEP) returns T and sound 2 !
(BEEP nil) returns nil !
(BEEP (IF (> 2 1) "Yes" nil)) returns "Yes" and sound 2 !
(BEEP 1 3) returns 1 and sound 3 !
(BEEP T 99) returns T and sound 2

The function can for example be used to indicate input error in dialogs.

(BOUNDP <atom>)
The function returns T if <atom> has a value bound to it. If no value is bound to <atom> it returns nil.

(SETQ a 1 b nil) !
(BOUNDP 1) returns nil !
(BOUNDP 'a) returns T !
(BOUNDP 'b) returns nil

(CADDR <list>)
The function returns the third object in the list

(CADDR '(101 102 103)) returns 103 !
(CADDR '((100 101 102) (a b c)) (d))) returns (d)

For more information see the list section.

(CADR <list>)
The function returns the second object in the list

(CADR '(101 102 103 104)) returns 102 !
(CADR '((100 101 102) (a b c))) returns (a b c)

For more information see the list section.

(CAR <list>)
The function returns the first object in the list.

Sound

0 Exclamation

1 Asterisk

2 Beep (default)

3 Hand

4 Question

! 10

(CAR '(100 101 102)) returns 100 !
(CAR '((1 2) 100 200)) returns (1 2) !
(CAR '()) returns nil

For more information see the list section.

(CDR <list>)
This function returns the list without the first object in the list.

(CDR '(100 101 102)) returns (101 102) !
(CDR '((100 101) a b)) returns (a b) !
(CDR '()) returns nil

When the list argument is a dotted pair, CDR returns the second element without the list.

(CDR '(1 . 100)) returns 100 !
(CDR '(2 . "INFO")) returns "INFO"

For more information see the list section.

(CEIL <number>)
The function round up the value to closest value.

(CEIL 1.1) returns 2.0 !
(CEIL -18.9) returns -18.0

(CHR <number>)
This function returns a character that represents that Unicode value. The <number> can be any integer value
from 0 to 65535.

(CHR 65) returns "A" !
(CHR 66) returns "B" !
(CHR 333) returns "!"

(CLIP-GET)
This function returns a string with the contents of the clip board. With this function you can for example import
information from excel.

(CLOSE <file>)
This function closes a file and returns nil. <file> is a file descriptor obtained from the OPEN function. After a
CLOSE, the file descriptor is unchanged, but is no longer valid.

(SETQ wfile (OPEN "c:/test/test.txt" "w") !
(WRITE-LINE "First line" wfile) !
(WRITE-LINE "Second line" wfile) !
(CLOSE wfile) returns nil

(CLS)
Clear the postprocessor console from all text

(COND (<test1> <execute1>) (<test2> <execute2) ...)
This function accepts any number of arguments. It evaluate the first item in each list until one of then returns a
value other than non nil. It then evaluate those expressions which follow the tests that succeeded, and returns
the value of the last expression.

(SETQ nr 1) !
(COND!
 ((= nr 0) (PRINC "Number is zero")) !

! 11

 ((= nr 1) (PRINC "Number is one")) !
 (T (PRINC "Number is not zero or one")) !
)

(CONS <new> <list>)
This function adds a new element in the beginning of the list and returns the complete new list .

(CONS 10 '(20 30 40)) returns (10 20 30 40) !
(CONS a nil) returns (a) !
(CONS '(a b) '(10 20 30)) returns ((a b) 10 20 30)

CONS also accept an atom in place of the <list> argument, constructing a structure known as a dotted pair.
When displaying a dotted pair, ILISP prints a period, or dot, between its first and second elements. The CDR
function can be used to return the second atom of a dotted pair.

(CONS 'B 22) returns (B . 22.0) !
(CAR (CONS 'B 22) returns B !
(CDR (CONS 'B 22) returns 22

A dotted pair is a special kind of list, and is not accepted as an argument by some functions that handle
ordinary lists.

(COS <angle>)
This function returns the cosine of <angle>, where <angle> is expressed in radians.

(COS 0.0) returns 1.0 !
(COS PI) returns -1.0 !
(COS (* PI 0.5)) returns 0.0

For more information see the Geometrical example.

(DATE)
The function returns a list with year month day.

(DATE) returns (2013 11 16)

See also the time function

(DEFUN <name> <argument list> <expressions> ...)
DEFUN defines a function with the name <name> (note that the function name is automatically Quoted and
must not be explicitly Quoted). Following the function name is a list of arguments (possibly void), optionally
followed by a slash and the names of one or more local symbols for the function. The slash must be separated
from the first local symbol and from the last argument, if any, by at least one space. If no arguments or local
symbols are to be declared, an empty set of parentheses must be supplied after the function name.

(DEFUN sample (a b)...) this function takes two arguments !
(DEFUN sample () this function have no argument !
(DEFUN sample (/ local1 local2) this function have two local variables. !
(DEFUN sample (a / local) this have one argument and one local
variable

Following the list of arguments and local symbols are one or more expressions to be evaluated when the
function is executed.
The DEFUN function itself returns the name of the function being defined. The local symbols may be used
within the function without changing their bindings at outer levels. The function will return the result of the last
expression evaluated. All previous expressions in the function have only side effects. The DEFUN function itself
returns the name of the function defined.
Never use the name of a built-in function or symbol as <name> since this will make the built-in functions
inaccessible.

! 12

(DISTANCE <pt1> <pt2>)
This function returns the distance between the points <pt1> and <pt2>. The two points can have any number
of dimensions.

(SETQ p1 (LIST 0.0 0.0)) !
(SETQ p2 (LIST 100.0 100.0)) !
(DISTANCE p1 p2) returns 141.421 !
(DISTANCE p1 p1) returns 0.0 !
(DISTANCE (LIST 100.0 0) p1) returns 100.0 !
(SETQ p3 (LIST 0 1 2 3 4)) !
(SETQ p4 (LIST 5 6 7 8 9)) !
(DISTANCE p3 p4) returns 11.18034 !!
For more information see the Geometrical example.

(DISTOF <expr> [min [max]])
This function takes a string or a numerical value as expr.
If the expr is a string then the function works as follows:
If the string can be converted to a numerical value and the value is between min and max then the function
returns that numerical value else it returns nil
If the expr is a numerical value and the value is between min and max then the function returns that value else
it returns nil.

(DISTOF nil) returns nil !
(DISTOF T) returns nil !
(DISTOF "120.2") returns 120.2 !
(DISTOF "120.2" 100 200) returns 120.2 !
(DISTOF "120.2" 121 200) returns nil !
(DISTOF "120.2" 110 120) returns nil !
(DISTOF 12) returns 12 !
(DISTOF 12 -20 20) returns 12 !
(DISTOF -22 -20 20) returns nil !
(DISTOF (LIST a b)) returns nil

The distof function is often used when programming dialog boxes.

(EQ <expr1> <expr2>)
This functions determines whether <expr1> and <expr2> are identical; that is, they are actually bound to the
same object (by SETQ, for example). EQ returns T if the two expressions are identical, and nil otherwise. It is
typically used to determine whether two lists are actually the same.

(SETQ l1 '(a b c)) !
(SETQ l2 '(a b c)) !
(SETQ l3 l2) !
(EQ l1 l3) returns nil (l1 and l3 are not the same list) !
(EQ l2 l3) returns T (l2 and l3 are exactly the same list)

See also the EQUAL function

(EQUAL <expr1> <expr2> [<fuzz>])
This function determines whether <expr1> and <expr2> are equal, that they should evaluate to the same
thing.

(SETQ l1 '(a b c)) !
(SETQ l2 '(a b c)) !
(SETQ l3 l2) !
(EQUAL l1 l3) returns T (l1 and l3 are evaluated to the same

! 13

thing) !
(EQUAL l2 l3) returns T (l2 and l3 are exactly the same list)

Whereas two lists that are EQUAL may not be EQ, atoms that are EQUAL are always EQ as well. In addition,
any two lists or atoms that are EQ are always EQUAL.
When comparing two real numbers (or two lists of real numbers, as in points), it is important to realize that two
"identical" numbers may differ slightly if different methods were used to calculate them. Therefore, an optional
numeric argument, <fuzz>, lets you specify the maximum amount by which <expr1> and <expr2> can differ
and still be considered EQUAL.

(SETQ a 1.123456) !
(SETQ b 1.123459) !
(EQUAL a b) returns nil !
(EQUAL a b 0.01) returns T !
(SETQ p1 (LIST 0.1 100.1)) !
(SETQ p2 (LIST 0.2 99.9)) !
(EQUAL p1 p2) returns nil !
(EQUAL p1 p2 0.5) returns T !
(EQUAL nil 91 0.1) returns nil

(EVAL <expr>)
Returns the result of an evaluation.

(SETQ a -2.0) !
(EVAL 99.9) returns 99.9 !
(EVAL a) returns -2.0 !
(EVAL (ABS a)) returns 2.0

(SETQ var7 199.98) !
(SETQ index 7) !
(PRINC (EVAL (READ (STRCAT "VAR" (ITOA index))) returns 199.98

See also the SET function

(EXP <number>)
This function returns e raised to the <number> power (natural antilog). It returns a real.

(EXP 1. 0) returns 2.71828 !
(EXP 2.2) returns 9.02501 !
(EXP -0.4) returns 0.67032

(EXPT <base> <power>)
This function returns <base> raised to the specified <power>. If both arguments are integers, the result is an
integer. Otherwise, the result is a real.

(EXPT 10 2) returns 100 !
(EXPT 10 3) returns 1000 and is the same as (* 10 10 10)

For more information see the Geometrical example.

(FILE-COPY <source> <target> <overwrite>)
The function copy a file from source to target.

(FILE-DELETE <file name>)
The function deletes the file if it exists. You can't delete more than one file at a time. It's not possible to use
"*".

(FILE-DELETE "c:/ncdata/100.cnc") returns T if the file exists and it
was deleted, else the function returns nil

! 14

(FILE-DIRONLY <file name>)
The function returns the path part from the filename. The last character is always a "/" or "\\"

Example: !
(FILE-DIRONLY "C:/NCDATA/MACHINE2/CNC/1008.CNC") returns "C:/NCDATA/
MACHINE2/CNC/" !!
(FILE-EXISTS <file name>)

(FILE-FINDALL <path> <mask>)

(FILE-MAKEDIR <path>)
Create a directory or multiple directories. The function returns the <path> if success or nil if the function did
not success.

(FILE-NAMEONLY <file path> [<remove ext>])
This function returns the file name part from a complete long filename including drive path and extension. In
ILISP you can use forward slash instead of backwards slash. The optional argument <remove ext> can be
included as a non nil value if you want to remove the extension.

Example: !
(FILE-NAMEONLY "C:/NCDATA/MACHINE2/CNC/1008.CNC") returns "1008.CNC" !
(FILE-NAMEONLY "C:/NCDATA/MACHINE2/CNC/1008.CNC" T) returns "1008" !
(FILE-NAMEONLY "C:/NCDATA/MACHINE2/CNC/1008.CNC" nil) returns "1008.CNC" !
(SETQ a 100) !
(FILE-NAMEONLY "C:\\NCDATA\\MACHINE2\\CNC\\1008.CNC" (= a 100))
returns "1008" !!
(FILE-OPENDIALOG <initdir> <filter>)
This function shows a windows open dialog with preview area. The function GETFILED is a similar function that
may be removed in the future. !
<initdir> is the initial directory for the open dialog. If you want windows to decide then leave this argument as
an empty string "".
<filter> Must be a string. The first part is what should be shown as information, the second part is the filter.

Example:

(FILE-OPENDIALOG "" "All important files|*.NC;*.CNC")

The example above will ask for a file with extension ".NC" or ".CNC"

(FILE-SAVEDIALOG <initdir> <ext>)
The function show a windows save as dialog. The function GETFILED is a similar function that may be removed
in the future. !
<initdir> is the initial directory for the dialog.
If you want windows to decide then leave this argument as an empty string "".
If you include a filename, then this filename will be default.
If you include
<ext> is the default extension of the file to save.

(FILE-SAVEDIALOG "c:/ncdata/" "txt") returns nil or filename !
(FILE-SAVEDIALOG "test.txt" "txt") returns nil or the filename !
(FILE-SAVEDIALOG "c:/ncdata/test.txt" "txt") returns nil or filename !
(FILE-SAVEDIALOG "c:\\ncdata\\test.txt" "txt") returns nil or filename

! 15

(FIX <number>)
This function returns the conversion of <number> into an integer. <number> may be either an integer or a
real. If real, it is truncated to the nearest integer by discarding the fractional portion.

(FIX 22) returns 22 !
(FIX 11.9) returns 11 !
(FIX -11.9) returns -11

(FLOAT <number>)
This function returns the conversion of <number> into a real, <number> may be either an integer or a real.

(FLOAT 12) returns 12.0 !
(FLOAT 19.8) returns 19.8

(FOREACH <var> <list> <expr>...)
This function steps through <list> assigning each element to <var>, and evaluates each <expr> for every
element in the list (or string see below). Any number of <expr> can be specified. FOREACH returns the result
of the last <expr> evaluated.

(FOREACH s (LIST 10 " "20 " " 30) (PRINC s))

The result of this FOREACH should be 10 20 30. The functions return 30
ILISP also support a string instead of a list.

(FOREACH s "ILISP" (PRINC s))

The result of this FOREACH should be "I" "L" "I" "S" "P". This variant is powerful to use when parsing
textstrings.

(GC)
This command makes global garbage collect in the whole IGEMS.

(GCD <num1> <num2>)
This function returns the greatest common denominator of <num1> and <num2>. Both argument must be non
zero integers. The result is the largest positive integer that divides the numbers without a remainder.
(GCD 12 4) returns 4
(GCD 4 8) returns 4
(GCD 8 3) returns 1
(GCD 25 5) returns 5

(GETFILED <Prompt> <default> <extension> <flag>)
Note! This function may be removed in the future. !
Please use the function FILE-OPENDIALOG or FILE-SAVEDIALOG instead of GETFILED
The function opens a file dialog and asks for a file name. !
The <prompt> argument must be a string and it will be displayed as the label of the file dialog.
The <default> argument can be a complete path file name and extension. If the argument is a filename only
then current windows path is used.
The <extension> argument should be without dot, and if it's an empty string then it's means the same as (*).
The <flag> argument is a bit coded integer value with following meaning:

Bit Meaning

1 Create a file new file. If this bit is not set then the function ask for an existing file.

2

4 Let the user enter an arbitrary file name extension, or no extension at all *

! 16

*Not implemented

Functions in this box may be replaced by other functions names like

CAD-GETANGLE, CAD-GETDIST, CAD-GETPOINT, CAD-GETCORNER and so on...

(GETANGLE <prompt> [basepoint])

(GETDIST <prompt> [basepoint])

(GETINT <prompt> <default> [min] [max])

(GETPOINT <prompt> [basepoint])

(GETREAL <Prompt > < default> <min><max>)
This function shows a dialog that ask for a numerical value.

(GETSTRING <Prompt> <default>)
!
(GETVAR <name>)
This function returns the system variable from IGEMS environment. The <name> must be a valid variable
string. Following variables are available:

(GETVAR "DIGFILE") returns the current drawing file name. If the name
refer to an existing file then the complete path and extension are returned. !
(GETVAR "LANGUAGE") returns the ISO639-1 two letter code for the
language. Example: "se" for English or "se" for Swedish. !
(GETVAR "PATHDATA") returns the IGEMS data folder. !
(GETVAR "PATHSHARED") returns the shared folder location. !
(GETVAR "PATHBIN") returns IGEMS bin folder. !
(GETVAR "PATHROOT") returns IGEMS installation folder. !
(GETVAR "PATHSCRIPT") returns the location of the latest loaded LISP file !
(GETVAR "VIEWAREA") returns a list of the currently visible rectangle
in the current drawing (x1 y1 x2 y2) !
(GETVAR "USERNAME") returns the current windows user.

8 If this bit is set and bit 0 is not set, the function performs a library search for the file name
entered. If it finds the file and its directory in the library search path, it strips the path and
returns only the file name. (It does not strip the path name if it finds that a file of the
same name is in a different directory.) *

16 If this bit is not set, the function returns the entire file name, including the path name. If
itÕs set it will only return the file name and extension. *

32 If this bit is set and bit 0 is set (indicating that a new file is being specified), users will not
be warned if they are about to overwrite an existing file. The alert box to warn users that a
file of the same name already exists will not be displayed; the old file will just be replaced.
*

64 Do not transfer the remote file if the user specifies a URL. *

128 Do not allow URLs at all. *

! 17

http://www.wiley.com/legacy/compbooks/graham/html4ed/appe/iso639.html

!
Example: !
(GETVAR "PATHDATA") returns "C:/ProgramData/IGEMS Software/IGEMS/
10.0.0.0/"

(GUID)
The function returns a unique windows string. The string can be used as a randomly ID.
(GUID) can returns "eb21bb57-9a51-40f4-b0e3-a99d004eaae5"
(GUID) can returns "a41cd4d2-2423-473d-bf7b-edd49dba2ad9"

(IF <testexpr> <thenexpr> [<elseexpr>])
This function conditionally evaluates expressions. If <testexpr> is not nil, then it evaluates <thenexpr>
otherwise it evaluates <elseexpr>. The last expression <elseexpr> is optional. IF returns the value of the
selected expression. If <elseexpr> is missing and <thenexpr> is nil then IF returns nil.

(IF (= T nil) "Same" "Not same") returns "Not same" !
(IF (= (+ 10 20) 30) "Same" "Not same") returns "Same" !
(IF (< 22 12) "OK") returns nil

(ITOA <number>)
The function returns the conversion of an integer or a real value to a string. If the value is a real it will be
rounded by standard rules.

(ITOA 99) returns "99" !
(ITOA 0) returns "0" !
(ITOA -6622) returns "-6622" !
(ITOA 6.5) returns "7" !
(ITOA 6.4) returns "6"

(KDTREE-CREATE <list of points>)
The function create a kdtree object from a list of points. The points has to have Y and Y first but can contain
any data after this. The function return the kdtree object. !
(SETQ p1 (LIST 10 10 "A") p2 (LIST 100 100 "B") p3 (LIST 110 110 "C")) !
(SETQ kd (KDTREE-CREATE (LIST p1 p2 p3))) ;returns the object

(KDTREE-FINDCLOSEST <kd> <point> <size> [number of points])
Scans the kd tree for the closest point in the rectangle centered at the <point> with half-width size. Returns the
list as specified in KDTREE-CREATE, or nil if no points are in the specified rectangle.

!
(SETQ point (LIST 100 100)) !
(SETQ ptlist (KDTREE-FINDCLOSEST kd point 20 2)) ;returns ((100 100 "B")
(110 110 "C"))

(KDTREE-INSERT <kd> <point>)
Insert a new point in an existing KDTREE. The <kd> is the object of an existing KDTREE. The function returns
the <kd> object.

(SETQ new (LIST 123.456 -118 "The new point")) !
(SETQ kd (KDTREE-INSERT kd new)) returns the object

! 18

 (LAMBDA <arguments> <expr> ...)
LAMBDA defines an "anonymous" function. This is typically used when the overhead of defining a new function
is not justified. It also makes the programmer's intention more apparent by laying out the function at the spot
where it is to be used. LAMBDA returns the value of its last <expr>, and is often used in conjunction with
APPLY and/or MAPCAR to perform a function on a list.

(APPLY '(LAMBDA (x y z) (* x (- y z))) (LIST 5 20 14)) returns 30 !
(SETQ q 0) !
(MAPCAR '(LAMBDA (x) (SETQ q (1+ q)) (* x 5)) (LIST 2 4 -6 10.2))
returns !
(10 20 -30 51.0)

(LAST <list>)
This function returns the last element in the <list>.

(LAST '(a b c d e f)) returns f !
(LAST '(a b c (d e)) returns (d e) !
(LAST nil) returns nil

(LENGTH <list>)
This function returns an integer indicating the number of elements in <list>.

(LENGTH '(a b 12 17)) returns 4 !
(LENGTH (LIST a b)) returns 2 !
(LENGTH nil) returns 0

(LIST <expr> ...)
This function takes any number of expressions <expr> and put them together, returning a list.

(SETQ a 100 b 200) !
(LIST 'a 'b 12 9) returns (A B 12 9) !
(LIST a b 12 9) returns (100 200 12 9)

(LISTP <item>)
This function returns T if <items> is a list, and nil otherwise.

(LISTP '(a b c)) returns T !
(LISTP 'a) returns nil !
(LISTP nil) returns T (nil is an empty list)

(LOAD <filename> [<onfailure>])
This function loads a file of LISP expressions and evaluates those expressions. <filename> is a string that
represents the filename without extension (an extension of ".lsp" is assumed). <filename> may include a
directory prefix, as in "/function/test".)
If the operation is successful, LOAD returns the value of the last expression in the file. If the LOAD operation
fails, it normally causes an LISP error. However, if the <onfailure> argument is supplied, LOAD returns the value
of this argument upon failure instead of giving an error. This allows an LISP application calling LOAD to take
alternative action upon failure.
Assume that the file "TEST.LSP" does not exist, then

(LOAD "C:/IGEMS_R10/LSP/TEST.LSP") causes a LISP error !
(LOAD "C:/IGEMS_R10/LSP/TEST.LSP" "No such file") returns "No such file"

If the same file exist.

(LOAD "C:/IGEMS_R10/LSP/TEST.LSP") returns last evaluation

The LOAD function can be used from within another LISP function, or even recursively (in the file being loaded).

! 19

Note: The function GETVAR is useful to get the address of different IGEMS folders.

(LOG <number>)
This function returns the natural log of <number> as a real.

(LOG 4.5) returns 1.50408 !
(LOG 1.22) returns 0.198851

(LOGAND <number> <number> ...)
This function returns the result of a logical bitwise AND of a list of <number>. The <numbers> must be
integers and the result is also an integer.

(LOGAND 4 6) returns 4 !
(LOGAND 4 1) returns 0 !
(LOGAND 2 3 15) returns 2 !
(LOGAND 8 3 4) returns 0

!
(LOGAND 7 15 3) returns 3

Value 3 (bit 1 and 2) is common for all numbers in the list.

(LOGIOR <number> <number> ...)
This function returns the result of a logical bitwise inclusive OR of a list of <numbers>. The <numbers> must
be integers, and the result is also an integer.

(LOGIOR 1 2 4) returns 3 !
(LOGIOR 9 3) returns 11

(LSH <num> <numbits>)
This function returns the logical bitwise shift of <num> by <numbits>. <num> and <numbits> must be
integers, and the result is also an integer. If <numbits> is positive, <num> is shifted to the left, if negative, to
the right. In either case, "zero" bits are shifted in, and the bits shifted out are discarded. If a "one" bit is shifted
into or out of the top bit of an integer, its sign changes.

(LSH 2 1) returns 4 !
(LSH 2 -1) returns 1 !
(LSH 9 1) returns 18 !
(LSH 9 -1) returns 4

(MAPCAR <function> <list1> ... <listn>)
MAPCAR returns the result of executing <function> with the individual elements of <list1> through <listn>
supplied as arguments to <function>. The number of <list>s must match the number of arguments required by
<function>. The MAPCAR always return a list of the result.

(SETQ a 10 b 20 c 30) !
(MAPCAR '1+ (LIST a b c)) returns (11 21 31)

1 (bit1) 2 (bit 2) 4 (bit 3) 8 (bit 4) 16 (bit 5) 32 (bit 6)

1 2 4 = 7

1 2 4 8 = 15

1 2 = 3

! 20

(MAX <number> <number> ...)
This function returns the largest of the <number>s given. Each <number> may be a real or an integer.

(MAX 20 -12 77.1) returns 77.18 !
(MAX -12 -10 -3) returns -3

(MEMBER <expr> <list>)
This function searches <list> for an occurrence of <expr> and returns the remainder of <list> starting with the
first occurrence of <expr>. If there is no occurrence of <exp> in <list>, MEMBER returns nil.

(MEMBER 'c '(a b c d e f)) returns (C D E F) !
(MEMBER 10 (LIST 9 10 11 12)) returns (10 11 12) !
(MEMBER 10 (LIST 20 30 40)) returns nil

(MIN <number> <number> ...)
This function returns the smallest of the <number>s given. Each <number> may be a real or an integer.

(MIN 100 200 300) returns 100 !
(MIN -100 100) returns -100

(MINUSP <item>)
This function returns T if <item> is a real or integer and evaluates to a negative value, otherwise it returns nil

(MINUSP -1) returns T !
(MINUSP 0.0) returns nil !
(MINUSP (- 10 12)) returns T

(NOT <item>)
This function returns T if the expression is nil, and nil otherwise.

(NOT T) returns nil !
(NOT nil) returns T !
(NOT 1) returns nil

(NTH <number> <list>)
This function returns the <number> element of <list>, where <number> is the number of the element to
return (zero is the first element). If <number> is greater than <list>s highest element number, nil is returned.

(NTH 0 '(a b c d)) returns A !
(NTH 3 '(a b c d)) returns D !
(NTH 3 '(10 20)) returns nil

(NULL <item>)
This function returns T if <item> is bound to nil, and nil otherwise. For example, given the following
assignments:

(SETQ a "Text") !
(SETQ b nil) !
(SETQ c 100) !
(NULL a) returns nil !
(NULL b) returns T !
(NULL c)

(NUMBERP <item>)
This function returns T if <item> is a real or an integer.

! 21

(NUMBERP "12") returns nil !
(NUMBERP 10) returns T !
(NUMBERP -2) returns T !
(NUMBERP nil) returns nil

(OPEN <filename> <mode> [encoding])
This function opens a file for access by LISP's I/O functions. It returns a file descriptor to be used by the other
I/O functions !
<filename> is a string specifying the name and may include a directory prefix and a drive letter. You can use
the backslash instead of the forward slash (but you must use double "\\" to obtain one backslash in a string.)

(SETQ fw (OPEN "c:/test/test.txt" "w"))

<mode> is the read/write flag. It must be a string containing a single lower case letter. The valid mode letters
are described in the following table. !
"r" Open for reading. If <filename> does not exist, nil is returned. !
"w" Open for writing. If <filename> does not exist, a new file is created and opened. If <filename>
already exists, its existing data will be overwritten. !
"a" Open for appending. If <filename> does not exist, a new file is created and opened. If
<filename> already exists, it is opened and positioned at the end of the existing data, so any new data you
write in the file will be appended to the existing data. !
Assuming that the files named in the following examples do not exist

(SETQ fr (OPEN "new.txt" "r")) returns nil !
(SETQ fw (OPEN "new.txt" "w")) returns FILE !
(SETQ fa (OPEN "new.txt" "a")) returns FILE

<encoding> !
If encoding is left out or nil, the file is written in the current windows ANSI codepage. !
If encoding is T, the file is written in utf-8 encoding, which should be used if an ILISP code file is written. !
If encoding is a string, itÕs the webname of the encoding used, for example "utf-8" "utf-16" "utf-32" and many
more. When creating CNC-files you can left out the encoding argument.

 (OR <expr> ...)
This function returns the logical OR of a list of expressions. OR evaluates the expressions from left to right,
looking for a non-nil expression. If one is found, OR ceases further evaluation and returns T. If all of the
expressions are nil, OR returns nil.

(OR nil nil) returns nil !
(OR T nil) returns T !
(OR "Text" 12) returns T !
(OR (= 1 1) (< 1 0)) returns T

Or is often use together with IF or COND functions.

PI
This is not a function, but rather the constant. It evaluates to approximately 3.1415926.

(PING <ip-string> <timeout>)
Checks if a remote connection is available.
<ip string> should be the address of remote computer, for example "192.168.5.110".
The <timeout> argument should be an integer for the timeout in milliseconds before failure (nil) is returned.
The function returns T if the remote is responding otherwise nil.

! 22

(POLAR <point> <angle> <distance>)
This function returns a point in the <angle> and <distance> from the <point>. The <angle> is expressed in
radians from the X axis, with angles increasing in the counterclockwise direction.

(SETQ from (LIST 0 0)) !
(SETQ ang (* PI 0.5)) !
(SETQ dist 100) !
(POLAR from ang dist) returns (0 100) !
(POLAR from (* ang 0.5) dist) returns (70.7107 70.7107)

For more information see the Geometrical example.

(PRINC <expr> [<file descriptor>]
This function prints the <expr> on the consol or on the file. <expr> can be a string containing control
characters.
\e for escape
\n for newline
\r for return
\t for tab
\nnn for the character whose octal code is nnn.

(PRINC "Part1\tPart2") will print "Part1 Part2" and return
"Part1\tPart2"

(PRINT <expr> [<file descriptor>])
This function prints the <expr> on the consol or on the file. <expr> can be a string containing control
characters. The control characters will be printed out with a leading "\".

(PRINT "Part1\tPart2") will print "Part1\tPart2" and return "Part1\tPart2"

(PROGN <expr> ...)
This function evaluates each <expr> sequentially, and returns the value of the last expression. You can use
PROGN to evaluate several expressions where only one expression is expected.

(IF (= a b) !
 (PROGN !
 (SETQ a (+ a 1.5)) !
 (SETQ b (- b 1.5)) !
) !
)

The IF function normally evaluates one expression. In this example, we have used PROGN to evaluate multiple
expressions.

(QUIT <msg>)
This function write the <msg> on the cons ol and interrupt the lisp execution.

(QUIT "*Cancel*") returns "*Cancel*"

(QUOTE <expr>)
Returns <expr> unevaluated. This can also be written 'expr.

(SETQ a 100) !
(QUOTE a) returns A

(RAND)
The function returns a random value between 0 to 1.

! 23

(RAND) returns 0.15806 !
(RAND) returns 0.7271

(READ <string>)
This function can convert a text to a lisp execution. !
The function returns the first list or atom obtained from <string>. <string> must not contain blanks.

(SETQ txt "(SETQ a 100")) !
(READ txt) returns (SETQ a 100) !
(EVAL (READ txt)) returns 100

(READ-CHAR [<file-desc>])
This function reads a single character from the keyboard input buffer or from the open file described by <file-
desc>. It returns the (integer) ASCII code representing the character read.
If no <file-desc> is specified and there are no characters in the keyboard input buffer, READ-CHAR waits for
you to type something at the keyboard (followed by RETURN). For instance, assuming that the keyboard input
buffer is empty:

(SETQ tk (READ-CHAR))

will wait for something to be entered. If you type "ABC" followed by RETURN. READ-CHAR will return 65 (the
unicode code for the letter "A"). The next three calls to READ-CHAR will return 66, 67. and I 0 (newline).
respectively. If another READ-CHAR call is then made, it will again wait for input.

(READ-LINE [<file-desc>])
This function reads a string from the keyboard or from the open file described by <file-desc>. If the end of the
file is encountered, READ-LINE returns nil, otherwise it returns the string that was read.

(SETQ fr (OPEN "c:/test/test.txt" "r") !
(WHILE!
 (SETQ txt (READ-LINE fr)) !
 (PRINC txt) !
) !
(CLOSE fr)

The example above will open a file, read and print out all lines, when it come to the end of the file it will close
the file.

(REM <num1> <num2> ...)
This function divides <num1> by <num2> and returns the remainder <num1> mod <num2>. REM may be
used with reals or integers.

(REM 19 6) returns 1 !
(REM 3 2) returns 1 !
(REM 2 2) returns 0 !
(REM 100 2.2) returns 1.0

(REPEAT <number> <expr> ...)
The function evaluates each <expr> <number> times and returns the value of the last expression. The
<number> must be an integer.

(SETQ b 1) !
(REPEAT 8 !
 (SETQ b (* b 2)) !
) !
(EVAL b) returns 256

! 24

(REVERSE <list>)
The function return the list with its elements reversed.

(REVERSE (LIST 1 2 3 4)) returns (4 3 2 1) !
(REVERSE '((a b) c d))) returns (D C (A B)) !
(REVERSE nil) returns nil (nil is an empty list)

!
(RTOS <number> <precision> [<all>])
This function converts a number to a string, the <precision> controls the number of digits. If the <all>
argument is nil or not included then ending zeroes will be removed.

(RTOS 10 3) returns "10" !
(RTOS 10 3 T) returns "10.000" !
(RTOS 12.5 0) returns "13" !
(RTOS 12.4 0) returns "12" !
(RTOS 0 8 T) returns "0.00000000"

(SET <'a> <value>)
The set function is similar to SETQ except that set evaluates both of its arguments.

(SETQ index 0) !
(REPEAT 10 !
 (SET (READ (STRCAT "VAR" (ITOA index))) (* index 10)) !
) !
(PRINC var5) returns 50 !
(PRINC var7) returns 70

See also the EVAL function

(SETQ <sym1> <expr1> [<sym2> <expr2>] ...)
This function sets the value of <sym1> to <expr1>, <sym2> to <expr2>, and so on. This is the basic
assignment function in LISP. It returns the last <expr>.

(SETQ a 5.0) returns 5.0 !
(SETQ b 100 c 32 d "Text")

Note! You should never use <symbol names> that are the same as the LISP functions.

(SIN <angle>)
This function returns the sin of <angle> as a real, where <angle> is expressed in radians.

(SIN 1.0) returns 0.841471 !
(SIN 0.5) returns 0.479426 !
(SIN 0) returns 0.0

For more information see the Geometrical example.

(SQRT <number>)
This function returns the square root of <number> as a real. The <number> must be positive.

(SQRT 4) returns 2.0 !
(SQRT 16) returns 4.0 !
(SQRT 2) returns 1.41421

For more information see the Geometrical example.

! 25

(STARTAPP <appcmd> [<file> <show>])
The command start another windows application. If <appcmd> does not include a full path name, startapp
searches the directories in the PATH environment variable for the application. An optional string <file> specifies
the file name to be opened.
If the show argument evaluates to T then the batfile will be shown in a window else not.

(STARTAPP "notepad" "c:/ncdata/test.txt")

(STRCASE <string> <lower>)
STRCASE takes the string specified by the <string> argument and returns a copy with all alphabetic characters
converted to upper or lower case, depending on the second argument. <lower>. If <lower> is omitted or
evaluates to nil, all alphabetic characters in <string> will be converted to upper case. If <lower> is supplied
and is not nil, all alphabetic characters in <string> will be converted to lower case.

(STRCASE "SAmpLE") returns "SAMPLE" !
(STRCASE "SAmpLE" nil) returns "SAMPLE" !
(STRCASE "SAmpLE" T) returns "sample" !
(STRCASE "SAmpLE" (NUMBERP 1)) returns "sample"

(STRCAT <string1> <strinq2>...)
This function returns a string that is the summary of all <strings>.

(STRCAT "A" "B" "C" "D") returns "ABCD" !
(STRCAT "IGEMS_R" (ITOA 10)) returns "IGEMS_R10" !
(STRCAT "A" "" "B") returns "AB"

(STRLEN <string>)
This function returns the length, in characters, of string <string> as an integer.

(STRLEN "CAD/CAM") returns 7 !
(STRLEN "") returns 0 !
(STRLEN "AB") returns 2

(STRREPLACE <text> <replace> <with>)
This function replace all text specified by <replace> with the text specified by the <with> argument in <text>.
All argument must be strings.

(STRREPLACE "ABABIGEMSABAB" "AB" "") returns "IGEMS" !
(STRREPLACE "12,5;14,4" "," ".") returns "12.5;14.4"

(STRSUB <text> <start> [<end>])
Note! The normal standard LISP has a function called SUBSTR this is different from this function.
The function returns a substring of the text, starting at the start position of the string and end at the end
position of the text. If the end argument is not specified then the substring continues to the end of text. If the
end value is smaller than the start value then the function returns a empty substring. If the start or end value
are negative, the counter starts from the end of the text instead of the start of the text.

Example: !
(STRSUB "ABCDEF" 3) returns "CDEF" !
(STRSUB "ABCDEF" 2 2) returns "B" !
(STRSUB "ABCDEF" 3 5) returns "CDE" !
(STRSUB "ABCDEF" -5) returns "BCDEF" !
(STRSUB "ABCDEF" -6 5) returns "ABCDE" !
(STRSUB "ABCDEF" 2 -2) returns "BCDE" !
(STRSUB "ABCDEF" -5 -1) returns "BCDEF" !
(STRSUB "ABCDEF" 10) returns "" !
(STRSUB "ABCDEF" -10) returns "ABCDEF"

! 26

(STRTRIM text [<leading> [<ending>]])
This function removes leading or ending whitespaces in a string. The <leading> and <ending> argument is by
default set to all whitespaces. This means ASCII 9, 10, 13 and 32. If you don't want to remove <leading> or
<ending> the set the argument to ""

(STRTRIM " IGEMS ") returns "IGEMS" !
(SETQ default (STRCAT (CHR 9) (CHR 10) (CHR 13) (CHR 32)) !
(STRTRIM " IGEMS " default "") returns "IGEMS " !
(STRTRIM " IGEMS " "" default) returns " IGEMS"

(SUBST <new> <old> <list>)
This function searches <list> for <old>, and returns a copy of <list> with <new> replaced in every occurrence
of <old>. If <old> is not found in <list>, SUBST returns <list> unchanged.

(SUBST new 20 (LIST 20 21 22)) returns (nil 21 22) !
(SUBST 'new 20 (LIST 20 21 22)) returns (NEW 21 22) !
(SUBST (LIST 10 20) 20 (LIST 10 20 30 40)) returns (10 (10 20) 30 40) !
(SETQ a nil b nil c nil) !
(SUBST T nil (LIST a b c)) returns (T T T)

(SUBSTR <string> <start> [<length>])
Note! See also the ILISP STRSUB function.
This function returns a substring of <string>, starting at the <start> character position of <string> and
continuing for <length> characters. If <length> is not specified, the substring continues to the end of
<string>. <start> (and <length>, if present) must be positive integers. The first character of <string> is
character number 1.

(SUBSTR "abcdef" 1) returns "abcdedf" !
(SUBSTR "abcdef" 4) returns "def" !
(SUBSTR "ABC" 1 1) returns "A" !
(SUBSTR "abcdef" 2 2) returns "bc"

(TCPIP-SEND <send string> <ip string> <port>)
This function sends a string using the TCP-IP protocol to a given address and port.

(TAN <radian>)
The function returns the tangent of an angle in radians.

(TAN 0.38044) returns 40.0

For more information see the Geometrical example.

(TIME)
The function returns a list with hours minutes and seconds.

(TIME) returns (23 45 10)

See also the date function.

(TOSTR <item>)
Convert the item to a string

(TOSTR (LIST "ILISP" (LIST 1 2 3))) returns "(\"ILISP\" (1 2 3))"

(TYPE <item>)
The function returns the type of <item> as a string where type is one of following.

! 27

(TYPE 12.2) returns "REAL" !
(TYPE (OPEN "test.txt" "r")) returns "FILE" !
(TYPE "text") returns "STR" !
(TYPE 66) returns "INT" !
(TYPE 'SETQ) returns "SYM" !
(TYPE (LIST 1 2)) returns "LIST" !
(TYPE SETQ) returns "SUBR"

(VER)
Returns the ILISP version as a text string.

(VER) returns "ILISP 1.0"

(WHILE <testexpr> <expr> ...)
This function evaluates <testexpr> and if not nil then evaluate <expr> . This continues until <testexpr> is nil

(SETQ q 0) !
(WHILE (< q 10) !
 (PRINC (ITOA (SETQ q (1+ q)))) !
)

This will print 1 2 3 4 5 6 7 8 9 10 on the consol and return "10"

(WRITE-CHAR <num> [<file-desc>])
This function writes one character to the console or to the open file described by <file-desc> <num> is the
Unicode for the character to be written, and is also the value returned by the function.

(WRITE-CHAR 333) write the character "š" and returns 319 !
(WRITE-CHAR 65) write the character "A" and returns 65

(WRITE-LINE <string> [<file-desc>])
This function writes <string> to the screen or to the open file described by <file-desc>. It returns <string>
quoted in the normal manner, but omits the quotes when writing to the file. For example, assuming that fw is a
valid open file descriptor:

(SETQ fw (OPEN "c:/test/test.txt" "w") !
(WRITE-LINE "First line" fw) !
(WRITE-LINE "Last line" fw) !
(CLOSE fw)

(ZEROP <item>)
This function returns T if <item> is a real or integer and evaluates to zero, otherwise it returns nil. It is not
defined for other <item> types.

(ZEROP -1) returns nil !
(ZEROP 1) returns nil !
(ZEROP 0.0) returns T !
(ZEROP (- (* 10 10) 100)) returns T

(POINTSORT <pointlist> <method>)
This function sorts a list of points. The two first arguments in each point-list is the X and Y coordinates. The
function can sort in following methods:
-1=The shortest of all methods 0-8.
0=Left to tight.
1=Right to Left.
2=Bottom to top.
3=Top to bottom.

! 28

4=Closest from first point.
5=Zig zag start Lower left.
6=ZigZag Start Lower Right.
7=ZigZag Start Upper Left.
8=ZigZag Start Upper right.

(SETQ pointlist Ô((10.0 2.0 "text1" 100) (5.0 5.9 "text2" 90)) !
(SETQ sorted (POINTSORT pointlist 1)) returns ((5.0 5.9 "text2" 90) (10.0
2.0 "text1" 100))

!

! 29

Geometrical example
This chapter describes more in deep some functionality.

Geometrical examples
This chapter gives more examples on geometrical functions.

!
All angles must are in radians and will be returns in radians.!
P1 and P2 are lists with X and Y coordinates.!
Examples:

(* (SIN V) H) returns B !
(* (COS V) H) returns A !
(* (TAN V) A) returns B !
(ASIN (/ B H)) returns V !
(ACOS (/ A H)) returns V !
(ATAN B A) returns V !
(ATAN (/ B A)) returns V !
(/ B (SIN V)) returns H !
(/ A (COS V)) returns H !
(/ B (TAN V)) returns A !
(SQRT (+ (EXPT A 2)(EXPT B 2))) returns H !
(SQRT (+ (* A A) (* B B))) returns H !
(SQRT (- (* H H) (* A A))) returns B !
(SQRT (- (* H H) (* B B))) returns A !
(POLAR p1 V H) returns P2 !
(ANGLE p1 p2) returns V !
(DISTANCE p1 p2) returns H !
(ANGTOS v 3) returns "DEGREE AS A STRING WITH 3
DECIMALS"

!
R is the radius, V is the angle and C is the circumference.

(* V R) returns C !
(/ C V) returns R !
(/ C R) returns V

! 30

Convert degree to radians:

(/ (* degree PI) 180.0) returns radians

Convert radians to degree:

(* (/ 180 PI) radians) returns degree

Circle calculations:

(* diameter PI) returns circumference !
(/ circumference PI) returns diameter !
(* radie radie PI) returns area !
(SQRT (/ area PI)) returns radie

!!
!

! 31

Variables
!
This rules is for IGEMS.LSP and the postprocessor
All variables from the Machine, Method and the material settings. *variable*
All untranced coordinates pp_
All transed coordinates pp_$
All coordinates that should be send to postprocessor $!!
Exemple of passing variables between functions
If a variable is local itÕs still global in a function in an upper level.
The VAR is local in Func1.
The Func1 use function CHKVAR.
The Var is also declared local in the VARCHK function but it can be used as it was passed by argument.
If you change the value of VAR in the VARCHK function, this has no effect of the variable in the FUNC1 function

Example:

(DEFUN func1 (/ var) !
 (SETQ var "A") !
 (PRINC "\nFUNC1 var= ")(PRINC var) !
 (VARCHK) !
 (PRINC "\nFUNC1 var=")(PRINC var) !
 (PRINC "\n") !
)

(DEFUN varchk (/ var) !
 (PRINC "\nVARCHK var=") (PRINC var) !
 (SETQ var nil) !
 (PRINC "\nVARCHK var=") (PRINC var) !
)

The function FUNC1 will print following:
FUNC1 var=A!
VARCHK var= A!
VARCHK var= nil!
FUNC1 var=A!

If the variable is not global in the VARCHK function it will also affect the variable in the FUN1 function.

(DEFUN varchk () !
 (PRINC "\nVARCHK var=") (PRINC var) !
 (SETQ var nil) !
 (PRINC "\nVARCHK var=") (PRINC var) !
)

The function FUNC1 will print following:
FUNC1 var=A!
VARCHK var= A!
VARCHK var= nil!
FUNC1 var=nil!

! 32

Dynamic Dialogs
IGEMS have a possibility to create and handle dialog boxed thru the ILISP programming interface. The dialogs
can be used in applications or in postprocessors.

Functions that create the dialog objects
The function below is used to create the dialog lauout.

(GP-DIALOG <caption> [attributes..])
This function creates a dialog with the text <caption> in the title row. The function returns a pointer that
should be used as parent to all other objects that are included in the dialog box. The function returns the object
name of the control.
Following attributes can be used.
ACTION CAPTION CHILDALIGN CHILDEXPANDX CHILDEXPANDY CHILDUNIFORMH CHILDUNIFORMW HEIGHT
RESIZABLE VERTICAL WIDTH WRAPCOUNT VISIBLE
Example: 1

!

(SETQ dlg (GP-DIALOG "Hello world")) !
(GP-SHOWMODAL dlg)

(GP-BUTTON <parent> <caption> [attributes..])
The function creates a button in parent dialog with the text <caption>. The function returns the object name of
the control.
Following attributes can be used:
ACTION ALIGN CAPTION DEFAULT ENABLED EXPANDX EXPANDY FLAT HEIGHT IMAGE RESPONSE UNIFORMH
UNIFORMW WIDTH VALUE VISIBLE
The value attribute is read only and can be used for mouse down
Example: 2

!

(SETQ dlg (GP-DIALOG "Hello world")) !
(SETQ button1 (GP-BUTTON dlg "Click" ENABLED nil)) !
(SETQ button2 (GP-BUTTON dlg "Close")) !
(GP-SHOWMODAL dlg)

The VALUE attribute is read only and can be used to check Mouse down. As long as the button is down then the
VALUE is T else nil.

 (GP-CHOICE <parent> <list> [attributes..])
This function creates a drop-down list in the parent object. The list should be a list of strings or empty. The
function returns the object name of the control. Default width is set to 75.
Following attributes can be used:
ACTION ALIGN ENABLED EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VALUE WIDTH VISIBLE !
Example: 3

! 33

!

(SETQ dlg (GP-DIALOG "Hello world")) !
(SETQ button1 (GP-BUTTON dlg "Click")) !
(SETQ choice (GP-CHOICE dlg (LIST "Jan" "Feb" "March" "April"))) !
(GP-SHOWMODAL dlg)

Next example shows how the controllers can be interacted.

Example 2:

; Initialize needed variables

(SETQ month (LIST "Jan" "Feb" "March" "April" "May" "June" "July" "Aug" "Sept"
"Oct" "Now" "Dec")) !
(SETQ showmonth 0)

; Initialize needed function

(DEFUN handler (object) ; Called each time an object is changed !
 (COND !
 ((= object button) !
 (SETQ showmonth (1+ showmonth)) !
 (IF (>= showmonth (LENGTH month)) (SETQ showmonth 0)) !
 (GP-SETQ choice VALUE showmonth)) !
 ((= object choice) !
 (SETQ showmonth (GP-GETQ choice VALUE))) !
) !
)

; Create the dialog !
(SETQ dlg (GP-DIALOG "Hello world" ACTION handler)) !
(SETQ button (GP-BUTTON dlg "Next month..")) !
(SETQ choice (GP-CHOICE dlg month VALUE showmonth)) !
(SETQ b:close (GP-BUTTON dlg "Close" RESPONSE "")) !
(GP-SHOWMODAL dlg)

(GP-EDIT <parent> [attributes..])
This function creates a text edit area in the parent object. The values that come from GP-EDIT are always a
string. If you want a numerical value then you must convert it to a numerical value. The function DISTOF is
designed for that. Note that GP-EDIT do not have any CAPTION attribute. If you need a text you must use the
GP-LABEL function. The function returns the object name of the control. Default width is set to 75.
Following attributes can be used:
ACTION ALIGN ENABLED EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VALUE WIDTH ENTERSIMTAB
VISIBLE
If you set the attribute ENTERSIMTAB to T then Enter can be used as TAB
Example: 4

!

! 34

; Initialize needed variables and functions !
(SETQ numvalue 100 txtvalue "Hello") !
(DEFUN handler (object) ; Called each time an object is changed !
 (COND !
 ((= object edit1) !
 (SETQ numvalue (DISTOF (GP-GETQ object VALUE))) !
 (IF (NOT numvalue) !
 (PROGN !
 (GP-MESSAGE "Message" "Value must be numerical") !
 (SETQ numvalue (GP-OLDVALUE)) !
 (GP-SETQ object VALUE numvalue) !
 (GP-FOCUS object T)) !
 (GP-SETQ object VALUE numvalue))) !
 ((= object edit2) !
 (SETQ txtvalue (GP-GETQ object VALUE))) !
 ((= object button) !
 (GP-CLOSE dlg "1")) !
) !
) !
; Create the dialog !
(SETQ dlg (GP-DIALOG "Edit input" ACTION handler)) !
!
(SETQ row1 (GP-ROW dlg)) !
(SETQ label1 (GP-LABEL row1 "Numerical value:")) !
(SETQ edit1 (GP-EDIT row1 VALUE numvalue)) !
!
(SETQ row2 (GP-ROW dlg ALIGN GPC-RIGHT)) !
(SETQ label2 (GP-LABEL row2 "Any text:")) !
(SETQ edit2 (GP-EDIT row2 VALUE txtvalue)) !
!
(SETQ button (GP-BUTTON dlg "OK" EXPANDX nil WIDTH 80 ALIGN GPC-BOTTOM)) !
(GP-SHOWMODAL dlg)

(GP-TOGGLE <parent> <caption> [attributes..])
This function creates a checkbox in parent with the text caption. The checkbox is not checked that must be
done with the attribute VALUE that can be T or nil. The function returns the object name of the control.
Following attributes can be used:
ACTION ALIGN CAPTION ENABLED EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VALUE WIDTH
VISIBLE !
Example: 5

! !
; Initialize needed variables and functions !
(SETQ daylist (LIST nil nil T T nil)) !
(DEFUN handler (object) ; Called each time an object is changed !
 (SETQ newdaylist (LIST (GP-GETQ t:0 VALUE) (GP-GETQ t:1 VALUE) (GP-GETQ t:2

! 35

VALUE) !
 (GP-GETQ t:3 VALUE) (GP-GETQ t:4 VALUE))) !
 (PRINC newdaylist) !
 (GP-CLOSE dlg newdaylist) !
) !
; Create the dialog !
(SETQ dlg (GP-DIALOG "Toggles")) !
(SETQ t:0 (GP-TOGGLE dlg "Monday" VALUE (NTH 0 daylist))) !
(SETQ t:1 (GP-TOGGLE dlg "Tuesday" VALUE (NTH 1 daylist))) !
(SETQ t:2 (GP-TOGGLE dlg "Wednesday" VALUE (NTH 2 daylist))) !
(SETQ t:3 (GP-TOGGLE dlg "Thursday" VALUE (NTH 3 daylist))) !
(SETQ t:4 (GP-TOGGLE dlg "Friday" VALUE (NTH 4 daylist))) !
(SETQ button (GP-BUTTON dlg "OK" EXPANDX nil WIDTH 80 ALIGN GPC-BOTTOM ACTION
handler)) !
(GP-SHOWMODAL dlg)

(GP-TOGGLEBUTTON <parent> <caption> [attributes])
This is a variant of the GP-TOGGLE that works in a similar way as the GP-TOGGLE. The only different is that this
object has a design of a button. It has the same attributes and properties.

(GP-TRACKBAR <parent> <vertical> [attributes])
Following attributes can be used:
VALUE, MINVALUE, MAXVALUE, ACTION
Default min and max values is 0 to 1.

(GP-RADIO <parent> <caption> [attributes])
This function creates a radio button with the text <caption>. Only one of the radio buttons that are on the
same parent can be activated at the same time. Note that it's not possible to use GP-ROW and GP-COLUMN as
parent. If you need GR-RADIO in several groups than you must use GP-FRAME. The function returns the object
name of the control.
Following attributes can be used:
ACTION ALIGN CAPTION ENABLED EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VALUE WIDTH
VISIBLE !
Example 6
In this example we are using 4 radio buttons

!

; Initialize needed variables and functions !
(SETQ direction "NORTH") !
(DEFUN handler (object) ; Called each time an object is changed !
 (COND !
 ((= object button) !
 (GP-CLOSE dlg direction)) !
 (T (SETQ direction (GP-GETQ object CAPTION))) !
) !
) !

! 36

; Create the dialog !
(SETQ dlg (GP-DIALOG "RADIO BUTTONS" ACTION handler)) !
(SETQ r:0 (GP-RADIO dlg "NORTH" VALUE T)) !
(SETQ r:1 (GP-RADIO dlg "EAST")) !
(SETQ r:2 (GP-RADIO dlg "SOUTH")) !
(SETQ r:3 (GP-RADIO dlg "WEST")) !
(SETQ button (GP-BUTTON dlg "OK" EXPANDX nil WIDTH 80 ALIGN GPC-BOTTOM)) !
(ALERT (GP-SHOWMODAL dlg))

Example 7
In this example we are using two groups of radio buttons, the first group change caption on the second group.

!

; Initialize needed function !
(DEFUN handler (object) ; Called each time an object is changed !
 (COND !
 ((= object r1:clock) !
 (GP-SETQ r2:n CAPTION "00:00") !
 (GP-SETQ r2:e CAPTION "03:00") !
 (GP-SETQ r2:s CAPTION "06:00") !
 (GP-SETQ r2:w CAPTION "09:00")) !
 ((= object r1:direction) !
 (GP-SETQ r2:n CAPTION "NORTH") !
 (GP-SETQ r2:e CAPTION "EAST") !
 (GP-SETQ r2:s CAPTION "SOUTH") !
 (GP-SETQ r2:w CAPTION "WEST")) !
 ((= object b:ok) !
 (GP-CLOSE dlg (GP-GETQ rbused CAPTION))) ; Get caption from last used
direction and close !
 (T (SETQ rbused object)) ; Save the last used direction !
) !
) !
; Create the dialog !
(SETQ dlg (GP-DIALOG "EXSAMPLE 7" ACTION handler)) !
(SETQ r1:clock (GP-RADIO dlg "CLOCK")) !
(SETQ r1:direction (GP-RADIO dlg "DIRECTINS" VALUE T)) !
(SETQ frame (GP-FRAME dlg "")) !
(SETQ r2:n (GP-RADIO frame "NORTH" VALUE T) rbused r2:n) !
(SETQ r2:e (GP-RADIO frame "EAST")) !
(SETQ r2:s (GP-RADIO frame "SOUTH")) !
(SETQ r2:w (GP-RADIO frame "WEST")) !
(SETQ b:ok (GP-BUTTON dlg "OK" EXPANDX nil WIDTH 80 ALIGN GPC-BOTTOM)) !
(ALERT (GP-SHOWMODAL dlg))

(GP-LABEL <parent> <caption> [attributesÉ])
This function creates a text object. The function returns the object name of the control,

! 37

Following attributes can be used:
ACTION ALIGN CAPTION ENABLED EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VALUE WIDTH
VISIBLE

(GP-LISTBOX <parent> <lst> [attributesÉ])
Create a list box. The object in the list box can be defined by the list <lst> or by the function GP-APPEND. The
function returns the object name of the control. Default width is set to 75.
Following attributes can be used:
ACTION ALIGN ENABLED EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VALUE WIDTH VISIBLE
Example 8
In this example we will read all files in a directory and add them to the list, when you clock on a file, the file
name will be written in a label.

!

; Initialize needed variables and functions !
(SETQ filelist (FILE-FINDALL "c:\\ncdata" "*")) !
(DEFUN handler (object) ;Called each time an object is changed !
 (COND !
 ((= object l:files) !
 (SETQ findex (GP-GETQ l:files VALUE)) !
 (SETQ filename (NTH findex filelist)) !
 (GP-SETQ t:file CAPTION (STRCASE filename))) !
 ((= object b:close) (GP-CLOSE dlg T)) !
) !
) !
; Create the dialog !
(SETQ dlg (GP-DIALOG "EXAMPLE 8" ACTION handler RESIZABLE T WIDTH 300)) !
(SETQ l:files (GP-LISTBOX dlg filelist)) !
(SETQ t:file (GP-LABEL dlg "")) !
(SETQ b:close (GP-BUTTON dlg "OK" ALIGN GPC-CENTER EXPANDX nil WIDTH 80)) !
(GP-SHOWMODAL dlg)

(GP-IMAGE <filename>)
This function creates an image object that can be used on GP-BUTTON controls. The file type must be a BMP,
JPG or PNG image.
If the image files are located in the same directory as the LSP file, you don't have to include the path. If you
should create dialogs for a postprocessor then you must include the path. GP-IMAGE has no available attribute.
The function returns the object name of the control.
Example 9

! 38

!

; Initialize needed variable and functions !
(SETQ imagelist (LIST (GP-IMAGE "fish.png") (GP-IMAGE "duck.png") !
 (GP-IMAGE "lion.png") (GP-IMAGE "rabbit.png") (GP-IMAGE
"shark.png"))) !
(SETQ imageindex 0) !
(DEFUN handler (object) ; Called each time an object is changed !
 (COND !
 ((= object b:animal) !
 (SETQ imageindex (1+ imageindex)) !
 (IF (>= imageindex (LENGTH imagelist)) (SETQ imageindex 0)) !
 (GP-SETQ b:animal IMAGE (NTH imageindex imagelist))) !
 ((= object b:close) !
 (GP-CLOSE dlg "")) !
) !
) !
; Create the dialog !
(SETQ dlg (GP-DIALOG "EXAMPLE 9" ACTION handler)) !
(SETQ label (GP-LABEL dlg "Click on animal" ALIGN GPC-CENTER EXPANDX nil)) !
(SETQ b:animal (GP-BUTTON dlg "" IMAGE (NTH 0 IMAGELIST) FLAT T)) !
(SETQ b:close (GP-BUTTON dlg "Close")) !
(GP-SHOWMODAL dlg)

(GP-MEMO <parent> [attributesÉ])
Creates a multiline edit box.
VALUE is the text in the memo box.

Functions that control the layout of the dialog
The dialog contains of the parent dialog and all controllers that are in the dialog. You can more sophisticated
dialogs by grouping them in rows and columns as a tree structure.

!
The figure below shows the structure between the controls, rows and columns.

! 39

!
Example 10

(SETQ dlg (GP-DIALOG "Dlg" WIDTH 300)) !
(SETQ toggle1 (GP-TOGGLE dlg "Toggle 1")) !
(SETQ row1 (GP-ROW dlg)) !
(SETQ frame1 (GP-FRAME row1 "Frame 1")) !
(SETQ column1 (GP-COLUMN row1)) !
(SETQ radio1 (GP-RADIO frame1 "Radio 1" VALUE T)) !
(SETQ radio2 (GP-RADIO frame1 "Radio 2")) !
(SETQ radio3 (GP-RADIO frame1 "Radio 3")) !
(SETQ fill1 (GP-FILL column1 HEIGHT 20)) !
(SETQ toggle2 (GP-TOGGLE column1 "Toggle 2")) !
(SETQ toggle3 (GP-TOGGLE column1 "Toggle 3")) !
(SETQ edit1 (GP-EDIT dlg VALUE "Edit 1")) !
(SETQ row2 (GP-ROW dlg)) !
(SETQ button1 (GP-BUTTON row2 "Button 1" WIDTH 80)) !
(SETQ button2 (GP-BUTTON row2 "Button 2" WIDTH 80)) !
(GP-SHOWMODAL dlg)

(GP-ROW <parent> [attributes..])
This function creates a row din the dialog. Available attributes are:
Following attributes can be used:
ALIGN CHILDALIGN CHILDEXPANDX CHILDEXPANDY CHILDUNIFORMH CHILDUNIFORMW ENABLED EXPANDX
EXPANDY HEIGHT UNIFORMH UNIFORMW VERTICAL WIDTH WRAPCOUNT VISIBLE

(GP-COLUMN <parent> [attributes..])
This function creates a row din the dialog. Available attributes are:
Following attributes can be used:
ALIGN CHILDALIGN CHILDEXPANDX CHILDEXPANDY CHILDUNIFORMH CHILDUNIFORMW ENABLED EXPANDX
EXPANDY HEIGHT UNIFORMH UNIFORMW VERTICAL WIDTH WRAPCOUNT VISIBLE

(GP-FRAME <parent> <caption> [attributes])
Create a frame with the text <caption> in the upper left corner. GP-FRAME can be a parent to other controllers.
Following attributes can be used:
ALIGN CAPTION CHILDALIGN CHILDEXPANDX CHILDEXPANDY CHILDUNIFORMH CHILDUNIFORMW ENABLED
EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW VERTICAL WIDTH WRAPCOUNT VISIBLE

! 40

(GP-FILL <parent> [attributes..])
Following attributes can be used:
ALIGN EXPANDX EXPANDY HEIGHT UNIFORMH UNIFORMW WIDTH VISIBLE !
Creates an empty area in the dialog. The function is usable when creating more advance dialogs. You can
activate EXPAND to press other controllers in different directions or to set a fixed size by using the HEIGHT and
WIDTH attributes.
Following attributes can be used:
ALIGN
EXPANDX
EXPANDY
HEIGHT
UNIFORMH
UNIFORMW
WIDTH

(GP-TABS <parent> [attributes..])
Creates a tab control.
VALUE attribute is an integer, which is an index of the currently selected page. If no page exist then the value is
-1. ACTION attribute is used when the user changes tab.
Following attributes can be used:
ALIGN, ENABLED, EXPANDX, EXPANDY, HEIGHT, UNIFORMH, UNIFORMW, WIDTH VISIBLE

(GP-TABPAGE <parent> [attributes ..])
Creates a tab page for a GP-TABS control. Parent has to be a tab control or an error will be raised. The tab page
works like a GP-COLUMN but can be altered to work as a grid or just like GP-COLUMN.
Following attributes can be used:
CHILDALIGN CHILDEXPANDX CHILDEXPANDY CHILDUNIFORMH CHILDUNIFORMW VERTICAL WRAPCOUNT
VISIBLE

Example:

(DEFUN handler (object) !
 (COND !
 ((= object tabs) !
 (SETQ index (GP-GETQ object VALUE)) !
 (COND !
 ((= index 0) (GP-SETQ tablabel CAPTION (STRCAT "Page 1"))) !
 ((= index 1) (GP-SETQ tablabel CAPTION (STRCAT "Page 2"))))) !
 ((= object b:close) !
 (GP-CLOSE dlg nil)) !
) !
) !
(SETQ dlg (GP-DIALOG "TAB SAMPLE" RESIZABLE T ACTION handler)) !
(SETQ tablabel (GP-LABEL dlg "")) !
(SETQ tabs (GP-TABS dlg)) !
(SETQ page1 (GP-TABPAGE tabs "FRUITS")) !
(SETQ btn1 (GP-BUTTON page1 "Apples")) !
(SETQ btn2 (GP-BUTTON page1 "Oranges")) !
(SETQ page2 (GP-TABPAGE tabs "VEGETABLES")) !
(SETQ btn1 (GP-BUTTON page2 "Carrots")) !
(SETQ btn2 (GP-BUTTON page2 "Beetroot")) !
(SETQ b:ok (GP-BUTTON dlg "OK" EXPANDX nil WIDTH 80 ALIGN GPC-CENTER)) !
(GP-SHOWMODAL dlg)

! 41

"

Functions that controls the behavior of the dialogs

(GP-SHOWMODAL <dialog>)
The function shows the dialog. The value that the function will return can be specified at different way.
• On a GP-BUTTON with the attribute RESPONSE
• With the GP-CLOSE function.
• If the user press ESC or close the dialog it will return nil unless you don't take care of this in the ACTION

callback function.

(GP-CLOSE <dialog> <return value>)
This function is normally used in the ACTION callback function. It will close the dialog. The specified return
value will be used by the GP-SHOWMODAL function.

(GP-MESSAGE <title> <caption>)
This function is similar to the ALERT function. The function shows a message box with the <title> and the
<caption> value and an OK button.

Example: !
(GP-MESSAGE "Title" "Caption") returns "Caption"

!
(The function ALERT that does the same thing will later be removed. Use GP-MESSAGE instead of ALERT)

(GP-YESNO <caption> [default])
This function shows windows standard message box with a Yes and No button. The <default> argument control
if "Yes" or "No" should be default. No is nil and yes is non-nil. If the argument is omitted then default is nil.

Example: !
(GP-YESNO "Are you sure" T) returns T if user press Yes else nil.

! 42

!
The dialog use the language specified in Windows.

(GP-FOCUS <control> [select])
This function moves the focus to the <control>. The control must be in the active dialog. If the optional
argument [select] is T used on a GP-EDIT control then the text is marked.

(GP-SETQ <control> [attributesÉ])
This function can change attributes like CAPTION and VALUE afterwards in a controller.

(GP-GETQ <control> <attribute>)
This function returns the actual value for an attribute. In the most cases it's used for getting the value for a
controller.

(GP-OLDVALUE)
Every time when a control gets focus, then the old value in the control is saved internally. This function returns
the old value. Normally the function is used to read the old value on incorrect entries.

(GP-RESTORE)
This function reset the controller to its value it had before it lost focus. The function is normally used together
with GP-OLDVALUE. If the controller is a GP-EDIT then the information is selected.

(GP-APPEND <control> <value>)
This function adds a new object in the controller. The control must be a GP-CHOICE or a GP-LISTBOX. The
value don't have to be a string, it adds the same text as PRINC should have done.
Example 11
In the example we will add new items in the listbox. The new items are defined in a GP-EDIT and added to the
list when you press the Add button. When you press OK then the value is printed out.

!

! 43

; Initialize needed variable and functions !
(SETQ objlist (LIST "A" "B" (+ 2 3))) !
(SETQ index 0) !
(DEFUN handler (object / value) ; Called each time an object is changed !
 (COND !
 ((= object b:add) !
 (SETQ value (GP-GETQ e:text VALUE)) !
 (IF (/= value "") !
 (PROGN !
 (SETQ objlist (REVERSE (CONS value (REVERSE objlist)))) !
 (GP-APPEND l:list value) !
 (GP-FOCUS e:text T)))) !
 ((= object b:ok) !
 (GP-CLOSE dlg (GP-GETQ l:list VALUE))) ; Return index from the listbox
and close !
) !
) !
; Create the dialog !
(SETQ dlg (GP-DIALOG "EXAMPLE 11" ACTION handler)) !
(SETQ l:list (GP-LISTBOX dlg objlist VALUE index)) !
(SETQ row1 (GP-ROW dlg)) !
(SETQ e:text (GP-EDIT row1 VALUE "")) !
(SETQ b:add (GP-BUTTON row1 "Add" DEFAULT T)) !
(SETQ b:ok (GP-BUTTON dlg "OK" EXPANDX nil WIDTH 80 ALIGN GPC-CENTER)) !
(GP-FOCUS e:text) !
(SETQ index (GP-SHOWMODAL dlg)) !
(PRINC (NTH index objlist))

(GP-REMOVE <control> <index>)
This function is the opposite as GP-APPEND. It removes an entry from a list or a combo box. The function
return the index.

Attribute for the dialogs

ACTION
With the ACTION attribute you can define a callback function that will be used on interaction with controllers. If
you define the ACTION in the GP-DIALOG then the defined function will be used for all controls used on that
dialog. You can also define ACTION that will be used locally on other controls)
The function defined by ACTION are called when you one of following.
1. You click on a GP-BUTTON.
2. You change selected object in GP-CHOICE or GP-LISTBOX.
3. When you leave GP-EDIT.
4. You click on a GP-LABEL.
5. When you activate or deactivate a GP-TOGGLE.
6. When you activate a GP-RADIO.
7. When you terminate a dialog with ESCAPE or the upper right terminate button in the dialog. In this

example the object name is the dialog itself.
The ALIGN attribute can be used on all controls except for GP-DIALOG.
Example 12
This example shows how the ACTION attribute is calling the handler function. It also takes care of ESCAPE.

! 44

!

(DEFUN handler (object) ; The callback function defined by ACTION !
 (COND !
 ((= object button:1) !
 (PRINC "1")) !
 ((= object button:2) !
 (PRINC "2")) !
 ((= object b:close) !
 (GP-CLOSE dlg "Dialog Closed")) !
 ((= object dlg) ; If the object the dialog then this indicate that the
user pressed ESCAPE !
 (GP-CLOSE dlg "Dialog Terminated")) !
) !
) !
!
(SETQ dlg (GP-DIALOG "Example 12" ACTION handler)) !
(SETQ button:1 (GP-BUTTON dlg "1")) !
(SETQ button:2 (GP-BUTTON dlg "2")) !
(SETQ b:close (GP-BUTTON dlg "Close")) !
(SETQ txt (GP-SHOWMODAL dlg)) !
(PRINC txt)

ALIGN
This attribute determines where the controller should be placed on the dialog. The attribute is only needed if it's
free space around the controller and you want to place the controller in special position on that empty area.
The ALIGN attribute is an integer that are pre-defined as constants.

It's also possible to combine different meaningful position like 3, 6, 9 and 12.
Note! You can't change the ALIGN attribute after that the dialog has been started by the GP-SHOWMODAL
function.

CAPTION
The CAPTION attribute can be used on following controls:
GP-BUTTON, GP-FRAME, GP-LABEL, GP-DIALOG, GP-TOGGLE and GP-RADIO
The attribute should always be a string and it can be changed at any time, for example in the callback function.

Integer Constant name Position

0 GPC-CENTER In the center of the free area.

1 GPC-LEFT On the left side in the free area.

2 GPC-TOP On the top of the free area.

4 GPC-RIGHT On the right side of the free area

8 GPC-BOTTOM On the bottom of the free area-

! 45

CHILDALIGN
This attribute can be set to T or nil and be used on following controls: GP-DIALOG, GR-FRAME, GP-ROW and
GP-COLUMN. The attribute use the same information as ALIGN. It's valid for all children that don't have any
ALIGN specified.

CHILDEXPANDX
This attribute can be set to T or nil and be used on following controls: GP-DIALOG, GR-FRAME, GP-ROW and
GP-COLUMN. The attribute use the same information as EXPANDX. It's valid for all children that don't have any
EXPANDX specified.

CHILDEXPANDY
This attribute can be set to T or nil and be used on following controls: GP-DIALOG, GR-FRAME, GP-ROW and
GP-COLUMN. The attribute use the same information as EXPANDY. It's valid for all children that don't have any
EXPANDY specified.

CHILDUNIFORMH
This attribute can be set to T or nil and be used on following controls: GP-DIALOG, GR-FRAME, GP-ROW and
GP-COLUMN. The attribute use the same information as EXPANDY. It's valid for all children that don't have any
EXPANDY specified.

CHILDUNIFORMW
This attribute can be set to T or nil and be used on following controls: GP-DIALOG, GR-FRAME, GP-ROW and
GP-COLUMN. The attribute use the same information as EXPANDX. It's valid for all children that don't have any
EXPANDX specified.

DEFAULT
This attribute can only be used for GP-BUTTON controls and it can only be set to T or nil. If you add this to a
button then it will be connected to the Enter button (as windows standard). If you define more than one GP-
BUTTON as DEFAULT then it's arbitrary who button that will be DEFAULT since only one button can have this
attribute.

ENABLED
The attribute can be T or nil. If the attribute is nil then the controller are disabled.
The attribute can be used on GP-BUTTON, GP-CHOICE, GP-EDIT, GP-LISTBOX, GP-TOGGLE and GP-RADIO.

EXPANDX
This attribute can be set to T or nil and can be used on all controls except for GP-DIALOG. As default this
attribute is set to T and it allows the control to grow in X-directions to fill all available space. If you set this
value to nil then the control shrink as much as possible.

EXPANDY
This attribute can be set to T or nil and can be used on all controls except for GP-DIALOG. As default this
attribute is set to nil that means it will only take as much space as needed. If you set this attribute to T then
the controller will grow in Y-direction to fill all available space.

FLAT
This attribute can be T or nil and be used on the GP-BUTTON dialog.
Example 13

! 46

!

(SETQ dlg (GP-DIALOG "Example 13")) !
(GP-BUTTON dlg "FLAT" FLAT T) !
(GP-BUTTON dlg "NOT FLAT") !
(GP-SHOWMODAL dlg)

HEIGHT
This attribute is an integer and is available for all controls. The value set the height of the control. If the control
is expandable in Y then this value is the smallest possible value.

IMAGE
This attribute can be used on GP-BUTTON controls. If the value is nil then no image will be used. If the value is
a object from GP-IMAGE then the image will be placed on the button.

RESIZABLE
This value can be T or nil and be used on GP-DIALOG only. If the value is non nil then the dialog can be
resizable.

RESPONSE
This attribute can be used on GP-BUTTON only. If the value is not nil then the dialog will close and the value of
RESPONSE will be returned in the GP-SHOWMODAL function.
Example 14
This example will print (12 14 15)

!

(SETQ dlg (GP-DIALOG "Example 14")) !
(GP-BUTTON dlg "BUTTON") !
(GP-BUTTON dlg "CLOSE" RESPONSE (LIST 12 14 15)) !
(PRINC (GP-SHOWMODAL dlg))

!

UNIFORMH
The value of this attribute can be T or nil. The attribute can be used on all controllers except GP-DIALOG.
All children that have the same parent who have this attribute set to T will have the same height. The height
will be that control that has the highest value.

! 47

UNIFORMW
The value of this attribute can be T or nil. The attribute can be used on all controllers except GP-DIALOG.
All children that have the same parent who have this attribute set to T will have the same width. The width will
be that control that has the widest value.

VALUE
This attribute should have different type of values depending of controller.
GP-CHOICE (Integer), GP-EDIT (String), GP-LISTBOX (Integer), GP-TOGGLE (Bool) and GP-RADIO (bool)
The attribute set the value in the controller.

VERTICAL
The attribute can be T or nil and it can be used on GP-ROW and GP-COLUMN.
The attribute is normally used internally. If you have a GP-ROW and set VERTICAL to T then the controller
behave as a CP-COLUMN and inversely.

WIDTH
This attribute should be an integer and it's available for all controllers. The value indicates the smallest with the
controller can have if the controller is expandable in X direction.

WRAPCOUNT
The attribute must be an integer and it can be used on GP-DIALOG, GP-ROW, GP-COLUMN and GP-FRAME
controllers.
The value indicate how many controllers it should be on each line in a column (or how many controllers it
should be on each column on a line). Default value for this attribute in 1. The WRAPCOUNT attribute makes it
easier to create a nice table in the dialog, since the size of the controllers will be equal on each line and
column.

!

(SETQ dlg (GP-DIALOG "Example 15" WRAPCOUNT 3)) !
(GP-BUTTON dlg "1") !
(GP-BUTTON dlg "2") !
(GP-BUTTON dlg "3") !
(GP-BUTTON dlg "4") !
(GP-BUTTON dlg "5") !
(GP-BUTTON dlg "6") !
(GP-BUTTON dlg "7") !
(GP-BUTTON dlg "8") !
(GP-BUTTON dlg "9") !
(GP-BUTTON dlg "0") !
(GP-BUTTON dlg "+") !
(GP-BUTTON dlg "-") !
(GP-BUTTON dlg "=") !
(GP-BUTTON dlg "CLOSE" RESPONSE T) !
(GP-SHOWMODAL dlg)

! 48

Dialog examples

Example 16
In this example we have a dialog box, with X and Y value and a button that pick up the X,Y value from a point
in IGEMS.

!

(SETQ x 0.0 y 0.0) !
(DEFUN handler (object) !
 (COND !
 ((= object b:pick) (GP-CLOSE dlg T)) !
 ((= object b:ok) (GP-CLOSE dlg nil)) !
) !
) !
(SETQ dlg (GP-DIALOG "Example 16" ACTION handler)) !
(GP-FILL dlg HEIGHT 10) !
(SETQ row (GP-ROW dlg)) !
(SETQ column (GP-COLUMN row WRAPCOUNT 2)) !
(GP-LABEL column "X:") !
(SETQ e:x (GP-EDIT column VALUE (RTOS x 3 T))) !
(GP-LABEL column "Y:") !
(SETQ e:y (GP-EDIT column VALUE (RTOS y 3 T))) !
(SETQ b:pick (GP-BUTTON row "-->" EXPANDX nil EXPANDY T ALIGN GPC-CENTER)) !
(GP-FILL dlg HEIGHT 10) !
(SETQ b:ok (GP-BUTTON dlg "OK" WIDTH 70 EXPANDX nil ALIGN GPC-CENTER)) !
(WHILE (GP-SHOWMODAL dlg) !
 (SETQ pt (GETPOINT "Pick point:")) !
 (IF pt !
 (PROGN !
 (GP-SETQ e:x VALUE (RTOS (CAR pt) 3 T)) !
 (GP-SETQ e:y VALUE (RTOS (CADR pt) 3 T)) !
) !
) !
)

! 49

ILISP command to control the CAD system
Our intension is to improve this part a lot in coming versions of IGEMS. Following commands are available for
the moment.

 (CAD-ARC <center> <startpoint> <endpoint> <ccw> [color])
The function draws an arc and returns the object name. The optional argument [color] should be an integer
from 1 to 255. If the [color] argument is omitted then current color will be used.

(CAD-DELETE <objects>)
The function deletes the objects from the drawing

(CAD-CLOSEDRAWING)
This function close actual drawing. The function returns T if the operation was successful else nil. Note! Please
be aware of that this function will not save any drawing.

(CAD-CIRCLE <center> <radius> [color])
The function draws a circle and returns the object name. The optional argument [color] should be an integer
from 1 to 255. If the [color] argument is omitted then current color will be used.

(CAD-COPY <objects> <from> <to>)
The function copies the objects <from> <to> and returns a new object list or an object.

(CAD-COLOR <color>)
The function change current color. The <color> should be an integer from 1 to 255.

(CAD-ENTSEL [prompt])
The function asks for an object and returns a list with the object name and the point.

(CAD-EXTENS <objects>)
The function returns a list with four reals describing the drawing extens (xmin ymin xmax ymax)

(CAD-EXPORTXML <objects> <filename>)
The <objects> argument is an object or a list of objects. The function creates a XML-file with information about
the selected objects.

(CAD-GET <object> <key>)
This function makes it possible to collect information from different objects on the screen. If you have a list of
object then you must check one object at a time. The function will return the requested information.

Key On object types Returns

"AREA" Parts and sheets This key can be used on parts and sheets.

"CENTER" Arc and Circle Returns a list with the center point.

"COLOR" All Returns the color of the object as an integer

"CLOSED" Polylines Returns T if the polyline is closed.

"END" Line, Arc Returns a list with the end point

! 50

If you use a non-existing key then the function will return nil. By using the function CAD-SET you can add
XDATA to the most type of IGEMS objects.

 (CAD-GETANGLE [basepoint] [prompt])
The function asks for a point. The argument <prompt> is displayed on the command line. The optional
[basepoint] argument draws a rubber band from the base point to actual crosshair position. The function
returns the angle in radians or nil if no angle is given.

(CAD-GETCORNER <basepoint> [prompt])
The function ask for the opposite corner point. The argument <basepoint> must be given. The function returns
a point or nil if no corner points are given.

(CAD-GETDIST [basepoint] [prompt])
The function asks for a distance. The argument <prompt> is displayed on the command line. The optional
[basepoint] argument draws a rubber band from the base point to actual crosshair position. The function
returns the distance or nil if no distance is given.

 (CAD-GETPOINT [basepoint] [prompt])
The function asks for a point. The argument <prompt> is displayed on the command line. The optional
[basepoint] argument draws a rubber band from the base point to actual crosshair position. The function
returns the point or nil if no points are given.

 (CAD-INSERTFILE <filename> <blkname> <inspos> <userpos> <explode>
<insposlowleft>)
<filename> The file to be inserted in current drawing.
<blkname> The preferred name for the blocks to be inserted. If not possible the blockname will be decorated
to a unique name. If "*" is used then IGEMS will set an automatic name for the block.
<inspos> The position the file is inserted at. Either this is the lower left point inserted drawing or the inserted
point stored in the drawing is depending on the parameter <insposleft>.
<userpos>
<explode> If this argument is not nil then IGEMS will explode the inserted blocks before the functions returns.

"GUID" All Returns a unique windows GUID string

"INFO" Sheets

"LAYER" All Returns the layer name of the object as a string

"NAME" Parts, sheets and cutorders. A string with the name

"NCFILE" Cutorder

"QUANTITY" Parts and Sheets This will returns the quantity of a part. If it's not a
part then the function returns nil

"RADIUS" Arc and Circle Returns a Real with the radius

"SELECTED" All Returns T if the object is selected else nil

"START" Line, Arc Returns a list with the start point

"TIME" Cutorder

"TYPE" All A string with that can be: !
"ARC", "LINE", "CIRCLE", "TEXT",

! 51

<insposlowleft> If this argument is non nil then the lower point of the inserted drawing is used as insertion
points, otherwise the insertion point stored in the drawing (normally 0,0) is used as insertion point.
The function returns a list of objects that was inserted.

(CAD-LAYER <name> [color])
The function changes the active layer. If the layer does not exist then the layer will be created. The optional
<color> command should be an integer from 1 to 255.

(CAD-LINE <startpoint> <endpoint> [color])
The function draw a line between the two points and returns the object name. The optional argument [color]
should be an integer from 1 to 255. If the [color] argument is omitted then current color will be used.

(CAD-MIRROR <objects> <point1> <point2>)
The function mirror the <objects> thru <point1> and <point2>

(CAD-MOVE <objects> <from> <to>)
The function move the objects <from> <to>

 (CAD-NEW [file name])
The function creates a new drawing. If the optional argument [file name] is given then this will be the default
name of the drawing. If no name are given then the system will use a standard name like Noname1, Noname2
and so on. Note! The function do not create the file on the hard disk. It has to be saved as normal.

(CAD-POINT <point> [color])
The function draws a point in current point style at the <point> argument. The optional argument [color]
should be an integer from 1 to 255. If the [color] argument is omitted then current color will be used.

(CAD-RECTANGLE <lowerleft> <topright> [color])
The function draw a rectangle between the corner points and returns the object name. The optional argument
[color] should be an integer from 1 to 255. If the [color] argument is omitted then current color will be used.

(CAD-REDRAW)
After you have added object you must run this function to have them visible on the CAD screen.

(CAD-REGEN [objects])
The function regenerates the objects in the [object list]. If the [object list] is omitted then all objects are
regenerated.

(CAD-REPLACE <objects>)
This function must be used to update the UNDO function.
Replace an exist object with a new object.

(CAD-ROTATE <objects> <angle> <center>)
The function rotate the <objects> in an <angle> from the <center>

 (CAD-SET <object> <key> <value>)
This function makes it possible to change information on different objects on the screen. If you have a list of
object then you must check one object at a time. The function will return the value.

! 52

If you use CAD-SET function with a non-existing key then this key will be added to the object. We call this
information XDATA. You can save strings on all kind of IGEMS objects. ItÕs a special handling for parts and parts
definitions. If the key starts with a dot. Example: ".PAINTED" then the same XDATA will be added for all
identical parts. If you add "PAINTED" it will be added to the selected part only. See also the CAD-GET function

 (CAD-SSGET [mode] [pt1 [pt2]])
The function let the user select objects on the screen, if object are selected then the object names are returned
in a list. The mode option has following alternatives.

!
(CAD-SCALE <objects> <xscale> <yscale> <basepoint>)
The function scale the select objects in <xscale> and <yscale> around the <basepoint>

 (CAD-SAVE <file name> [objects])
Save the objects specified as <objects> as a <filename>

(CAD-SAVEAS <filename>)
Save the drawing as the specified filename.

(CAD-SAVEIMAGE <objects> <filename> <width> <height> [border] [background])
The function creates an image. If no border is given the then the border is 3 pixels. If no background is given
or zero then the background is transparent. The color is the same as the color number in the color command.

(CAD-TEXT <txt> <pos> <height> <angle> [color] [font])
Insert a text on the drawing. <txt> is the text to add,<pos> is the insertion point, <angle> is the angle in
radians. The argument [color] is optional. [font] is an optional argument for the text font default is "ISOCP"
which is the built-in single font You can also use one of the installed windows font, for example "Arial".

 (CAD-ZOOMCH <center> <height>)
The function centers the view at <center> and a viewport of height <height>.
<center> is a list of the point that will be the new center of the screen.
<height> is a value that describe the height of zoom in actual units.

Key Returns

"COLOR" Set the color of the object as an integer

"LAYER" Set the layer name of the object as a string

"SELECTED" Select object if the value is T.

"QUANTITY" Set the quantity of a part. If it's not a part then the
function returns nil

Mode Meaning

"L" Return the last object added to the drawing database.

"C" Use Crossing type and need two points.

"W" Use Windows type and need two points

"X" Take all objects on the screen

! 53

(CAD-ZOOMEXTENTS)
Zooms out that everything on the screen will be visible

(CAD-ZOOMWINDOW <pt1> <pt2>)
This function zooms a window given by two points.
<pt1> and <pt2> is lists of two reals that describe the position in X and Y

! 54

ILISP functions for the CAM module

(CAM-CREATESHEET <name> <xsize> <ysize> <collar>)
Creates a rectangular sheet at with <xsize> and <ysize> and <collar>

(CAM-LOADMAC <machine>)
The function load actual machine with latest used cutting parameters.

 (CAM-LOADMACMAT <machine> <group> <quality> <thickness>)

(CAM-MATINFO)
The function returns a list with ("NAME" "QUALITY" "THICKNESS" "DENSITY")

(CAM-MACINFO)
The function returns a list with ("NAME" "TYPE")

(CAM-OPENSHEETFILE)
Open matching sheet file.

(CAM-PARTDATA <object>)
Returns a list (cutting time and cutting length)

(CAM-PROCESS <cutorder><filename><option>)
The command run the postprocessor and creates a filename. The option should be 6. More documentation will
come on different options.

(CAM-SETZEROPOINT <cutorder> <pt>)
The command modifies the zero point of the cut order. The coordinate is in the coordinate system from the
CAD-system.

(CAM-UNIQUEPARTS <objects>)
The <objects> can be one object or a list of objects. The function will return a list of unique parts. Other
objects than parts will not be member in the list.
Example:
If you have 10 parts A and 5 parts B and 1 part C then your objects list will contain 16 parts. The function will
return a list of three parts (A B C) !

! 55

Lead script
By holding down the CTRL the same time as you press the Favorites button you can edit the script. The script
may only be changed if you have experience of LISP programming.

Variables that holds information
This variables is always set when the script is in use.

You can also use all machine and material variables in the script.

(LEAD-SET type name dynmax dynmin inradius inangle outlength
outradius outangle overcut piercingtype)
Type : 0=Outer 1=Inner 2=Corner 3=Alternative
If dynmin < dynmax then the lead will dynamic
piercingtype 0-6
inangle och outangle are in degree.

LEAD-YSIZE Real The size in Y in mm

LEAD-HOLE Bool T if it's an internal geometry else nil

LEAD-CLOSED Bool T if it's a closed geometry else nil.

LEAD-LENGTH Real The perimeter of the geometry in mm

LEAD-AREA Real The area of the hole if it's a hole else the area of the
part.

LEAD-XSIZE Real The size in X in mm

LEAD-CIRCLE Bool T if it's a circular hole else nil

! 56

Reports

Overview
When running a report in IGEMS a template report file is populated with data from IGEMS and generates a document
that can be save and/or printed. The template files have extension .tig. For every type of report you can make your
own customized reports of that type.
The reports are located in the IGEMS shared folder under the folder Reports. Each type of report has its own
subfolder.

• CostEstimate

• Inlay

• Nest

• Organizer

• Postprocessor

• SheetInventory

These are the different types of reports shipped with IGEMS.!
In each subfolder all the reports of that type are placed.!
A report consists of the following files.

• filename.tig

o This is the report template

• filename.xml

o This is a settings file with all LISP tags and other settings

• filename.lsp

o This is the startup-script that can be attached to a report

!
The report system has two states. The generated report and the edit state.!
To switch between the generated report and the edit state press IGEMS/Toggle report view or press F5. !
!
IGEMS is shipped with a number of standard reports. To customize a report you need to manipulate the report
template. It is not possible to change the standard reports. To create a custom report you can do that in several ways.

Create a custom report using the standard report as a template.
• Run a standard report and press F5 to switch to edit mode.

• Select File/Save as... and save the report template in the same folder under another name.

• You can now start editing your own custom report.

• When running the report from IGEMS a dialog will appear and prompt you to select which report to run.

Create a custom report from scratch
• Run a report and press F5 to switch to edit mode.

• Select File/New to create a new document.

• Select File/Save and save the file in the same folder.

APP reports
Reports can also be generated from the APP section in IGEMS. Here you can make your own totally custom reports.
You have to write a LISP app to generate the report data and write a report template file. This will be covered in a
separate section below.

! 57

Editor overview
The report editor is a simple word processor with built in report features. You can do most common word processing
tasks. The generated report can be manually edited before saved or printed. You can export the document to several
different formats including .rtf, .doc, .docx, .html, .pdf, .rtf, .xml, .txt. The normal word processing features will not be
covered in this document, please contact our support if you need help. The exception is tables. Tables are used
extensively when writing report templates so a few notes are in order.

Tables
To insert a table in a document select Table/Insert/Table from the menu.!
Type in the number of rows and columns and press ok.!
A table is now inserted. The table has all grid lines ON as default. To change the properties of a table place the cursor

in a table cell and select Table/Select/Table and then select Table/Properties...!
A dialog box is presented where you can alter the appearance of a table or individual cells of a table. You can set
which grid lines of a table or cell are visible and change the background color etc... In the second tab ÒSize and
formattingÓ there are two check-boxes that are important.

• Allow row to break across pages

o If this box is checked a table row can be broken on multiple pages. If you want a table row to stay on
one page you must uncheck this box.

• Repeat as header row at the top of each page

o If you select a row in a table and check this box that row will be repeated at the top of each page if
the table spans multiple pages.

Tags
A tag is a text field in the template that will be replaced with data when generating the report.!
When you move the mouse over a tag the cursor will change to a ÒhandÓ. This indicates that the tag has special

meaning. You can change the displayed name of the tag, you can delete a tag and you can edit a tag.!
!
Double input position. When placing the cursor in a tag the tag is highlighted. As long as the tag is highlighted you can
edit the displayed name of the tag. When the cursor is at the start or end of a tag you can press the Left Arrow key

and Right Arrow key to leave the tag. This is called a double input position. !
!
When the report is generated the tag is replaced by the data in the tag. The formatting of the tag is retained in the

report. All properties of the tag like Font, Size, Color, Bold, Italic, Alignment etc... is retained.!
!
Example: We have a tag called Name with data IGEMS Report!
Name -> IGEMS Report

Multiple data tags
A tag can contain multiple data. For example if you run the CostEstimate report the tag Part.Name will contain the
name of all the parts. If you place the tag in the main text of the document it will be replaced with the data for the first
part. The only way to display all data of a tag is to place it in a table. If a tag is placed in a table the table will expand

and show all data for that tag.!
Example:

The first row is normal text and does not contain any tags.!
The second row contains tags with multiple data.!
When running the report this table will expand and will look like this.

Name Quantity Cutting cost Material cost Total cost

Name Quantity CutCost MatCost TotalCost

Name Quantity Cutting cost Material cost Total cost

PART-36 5 87,93 kr 106,70 kr 973,16 kr

! 58

!
Adding t ags
To add a tag you must be in edit mode.!
In edit mode you will have a tree structure on the right side in the editor.!
This tree view contains all the data tags available for the report.!
By double clicking on a tag in the tree view the tag is inserted in the document.

Deleting tags
To delete a tag just delete the whole tag using the Del or Backspace keys.

Editing tags
To edit the properties of a tag you double click the tag.!
When double clicking a dialog will appear where you can change the properties of the tag.!
What properties you can change depends on the type of the tag.!
When editing properties of a tag that affects only the tag edited in the document.

Tag types

String
The tag is replaced by a string

Int
The tag is replaced by an integer

Currency
The tag is replaced by a currency using the currency settings in Windows

Double
The tag is replaced by a double
You can change the display name, number of decimals and if the unit should be visible.

Date
The tag is replaced by a date in the Short date format defined in Windows.

Time
The tag is replaced by a time in HH:MM:SS format
You can change to Decimal hour and then the time is shown in HH.## format.
Example 17:03:02 will be displayed as 17.05

Image
The tag will be replaced by an image
When an image tag is placed in the report you can use the grips to resize it to fit your needs.

PART-37 12 113,01 kr 447,32 kr 6.723,90 kr

PART-38 2 148,44 kr 289,35 kr 875,58 kr

! 59

LISP
A LISP tag or user defined tag is a special tag that the user creates. Above the tree view you have a + button
called ÒAdd user defined tagÓ. If you press this button a dialog appears where you can create your own tag and
write a LISP script. LISP tags will be covered below.

Special tags
Special tags are placed under the IGEMS meny item. These tags are not editable.

!

LISP tags
Press the ÒAdd user defined tagÓ above the tree view in edit mode.!
Enter the name of the tag to create.!
Now the Edit LISP dialog will appear.!
Here you can write your custom tag and use all the tags already defined for the report.!
By double clicking on a tag on the right the correct LISP syntax is inserted in the editor.!
The value of the LISP script will be the value of the tag. By pressing the Eval button the value will be displayed. !
!
Examples:!
(+ (TAG "Part.CutCost") 10)!
This will add 10 to the CutCost of each part!
!
(strcat (TAG "Part.Name") "#")!
This will append a # after the name of each part!
!
(setq a 100)!
This tag will have the constant value of 100!
!
(TAGCNT "Part.Name")!
This will return the number of multiple data for this tag!
!
(TAG "Part.Name" 3)!
This will return the name of the fourth data for the tag ÒPart.NameÓ (zero based index)!
When adding the index this tag will be constant and always return the same value.!
!
(TAG "Part.Name")!
This will return the name of the data for the tag ÒPart.NameÓ!
This value will change when this tag is placed in a table!
!
So, by using LISP tags you can make calculations to fine tune your reports.!
The user defined tags are added to the tree view under the LISP branch.

Tag

Date Will be replaced by the current date

Time Will be replaced by the current time

Pages Will be replaced by the total number of pages

Pagenumber Will be replaced by the current page number

! 60

Conditional sections
You can add conditional segments to a report using the following syntax. !
{IF TAG É ENDIF} !
If the tag after the {IF is evaluated to 1 the part between {IF and ENDIF} will be visible in the report. !
!
Example:!
{IF ShowInfo !
Part.Name!
Part.Customer!
ENDIF}

Startup script
Every report can have a startup script connected to it. To edit or create a startup script select IGEMS/Startup script !
Now a LISP editor is opened where you can write a LISP application that will automatically be run before the report is

generated.!
!
In this LISP application you can create tags that can be used in the report. !
You can display a dialog box if you like.!
You can also do anything else you like, for example export data or communicate with other systems.!
!
In the startup script you have the following special functions for handling reports.!
(TAG Name Index)

• Name is the name of the tag

• Index is the index for multiple data tags

• Returns the value of the tag at Index

!
(TAGCNT Name)

• Name is the name of the tag

• Returns the number of data rows for the tag

!
(SETTAG Name Value [Description])

• Name is the name of the tag

• Value is the value of the tag and can be of the following types

o String

o Double

o Int

• Description is optional and if used will be displayed in the tree view when the tag is selected.

!
So, by using a startup script you can create a set of custom tags that can be used in the report. You can for example
create a startup script that displays a dialog box where the user can enter a ÒPreparation costÓ. This ÒPreparation costÓ

can then be used in the report.!
!
To create multiple data tags you just call SETTAG multiple times with different Values.!
Example!
(SETTAG ÒSpecial.UsersÓ ÒBoÓ)!
(SETTAG ÒSpecial.UsersÓ ÒIngeÓ)!
(SETTAG ÒSpecial.UsersÓ ÒNilsÓ)!
(SETTAG ÒSpecial.UsersÓ ÒPatrikÓ)!
!

! 61

Example.!
This example will create a tag with a modified Part.CutCost that adds 10 to each current Part.CutCost.!
!
(setq idx 0)!
(setq rows (TAGCNT "Part.CutCost"))!
(repeat rows!
(SETTAG "Part.CutCost2" (+ (TAG "Part.CutCost" idx) 10))!
(setq idx (+ 1 idx))!
)

Printing
Every report template can have a printer connected to it. This can be any installed printer. To select a printer for the

report select IGEMS/Set printer !
The printer you select here will be preset when printing and used if quick printing this report.!
It will also be used if running a report for direct printing.

APP reports
ItÕs possible to create a totally custom report from the APP section in IGEMS.!
You have the following special functions to use!
!
(REPORT-INIT)

• Must be called before using any of the other functions!

!
(SETTAG Name Value [Description])

• Name is the name of the tag

• Value is the value of the tag and can be of the following types

o String

o Double

o Int

• Description is optional and if used will be displayed in the tree view when the tag is selected.

!
(SETTAGIMAGE Tagname Filename Width Height)

• Tagname

o The name of the tag

• Filename

o The name of an image file (.png, .bmp, .jpg...)

• Width

o Size of the image in the report

• Height

o Height of the image in the report

!
(SETTAGEMF Tagname Ents SizeX SizeY Width Height)

• Tagname

o The name of the tag

• Ents

o An entity or list of entities to create the image of

• SizeX

! 62

o Width of the EMF image

• SizeY

o Height of the EMF image

• Width

o Size of the image in the report

• Height

o Height of the image in the report

• Use 300 as a start value for SizeX, SizeY, Width and Height

!
(REPORT-RUN template [resfile] [print])

• Template

o The report template to run

• Resfile

o a .doc or .pdf filename

o If used the report will not be visible but automatically saved to resfile

• Print

o If a resfile has been defined and print=1 then the report is automatically printed to the printer set in
the template

Converting old reports
Just replace the old <<TAG>> syntax with the new tags in the report template file.!!

! 63

Postprocessor events !
Updated 2013-06-04
!
ARC CHABRASIVE CHMODE CHPRESSURE HEADER LINE PART QUALITY STOP TOOLUP
TOOLDOWN TEXT

$CCIRCLE
This function will add geometry for a 360 degree circular movement in the CNC-file.

($CCIRCLE <idist> <jdist> <speed>)
The IDIST argument the distance to the circle center in X and JDIST is the relative distance to circle center in Y
(In IGEMS coordinate system).
Speed is the cutting speed in mm/min.
The movements generated by the $CCIRCLE function do not handled by the simulation system.

$CLINE
This function will add geometry for a linear movement in the CNC-file.

($CLINE <xdist> <ydist> <speed>)
The XDIST argument is the relative distance from current position to the end if the line in X and the YDIST
argument is the distance in Y.
The movements generated by the $CLINE function do not handled by the simulation system.

ARC
This event handles the circular movements. If you do not include a function for this event then the movement
will be done LINE vectors.
Following variables can be included in the postprocessor to overwrite existing machine setup settings:
LargestSegmentAngle!
MaxRadius!!
The function can use following variables:

$a Real The angle in radians of the major axis. If no 5-axis equipment are in use this variable is
always 0. The value is transformed to the actual kinematic.

$amotor Real The angle in radians of the major axis. The value is always in motor degree.

$ab Bool T if the movement have any A or B information else nil.

$b Real The angle in radians of the minor axis. If no 5 axis equipment are in use this variable is
always 0

$bmotor Real The angle in radians of the minor axis. The value is always in motor degree.

$f Real Cutting speed (this value can normally be used)

$fe Real The cutting speed at the end of the arc.

! 64

$flag Int This is a bit value with following meaning:
1=Belongs to a lead-in
2=Belongs to a lead out
4=Belongs to marking
8=Belongs to circular piercing
16
32

$fs Real The cutting speed at the start of the arc.

$i Real Circle center in X (the value can be in absolute or incremental mode depending on the
geometry settings in the machine setup).

$Iabs Real Circle center in X

$Irel Real Circle center in X relative from arc start point

$j Real Circle center in Y (the value can be in absolute or incremental mode depending on the
geometry settings in the machine setup.

$Jabs Real Circle center in Y

$Jrel Real Circle center in Y relative from arc start point

$len Real The length of the arc

$r Real The radius of the movement. On many controllers this value can be used for circular
movements with an included angle less than 180 degree

$segment Real The segment angle of the arc. The value is positive for CCW and negative for CW.

$short Bool

$slope Real The max cutting angle at this position. Vertical is 0.0 The angle is caclulated in the vector
direction as radians.

$vector list A list of three values that describe the direction of the jet. Example: (0 0 -1)

$x Real The endpoint in X (the value is transformed according to the Axis direction setting in the
Machine Setup).

$xm Real The midpoint of the arc in X. This is the standard method for robot programming of arcs

$y Real The endpoint in Y (the value is transformed according to the Axis direction setting in the
Machine Setup).

$ym Real The midpoint of the arc in Y. This is the standard method for robot programming of arcs

$zref Int This variable is nil if no pre-measuring tool are used. In other case itÕs an integer that
refer to that measure point that are measured by the MEASURE function.

!
The variable is T if the move describe the shorter alternative else nil.

! 65

!
Example 1:!
This example is working on almost all machines.

(DEFUN arc () !
 (IF $ccw !
 (WRITE (STRCAT (NTXT) "G03 X" (RTS $X) " Y" (RTS $Y) " I" (RTS $I) "
J" (RTS $J) " F" (RTF $f))) !
 (WRITE (STRCAT (NTXT) "G02 X" (RTS $X) " Y" (RTS $Y) " I" (RTS $I) "
J" (RTS $J) " F" (RTF $f))) !
) !
)

Example 2:!
This example use the R (radius) if the included angle is less than 180 degree

(DEFUN arc () !
 (COND !
 ((AND $ccw $short) !
 (WRITE (STRCAT (NTXT) "G03 X" (RTS $X) " Y" (RTS $Y) " R" (RTS $R) "
F" (RTF $f)))) !
 ($ccw !
 (WRITE (STRCAT (NTXT) "G03 X" (RTS $X) " Y" (RTS $Y) " I" (RTS $I) "
J" (RTS $J) " F" (RTF $f)))) !
 ((AND (NOT $ccw) $short) !
 (WRITE (STRCAT (NTXT) "G02 X" (RTS $X) " Y" (RTS $y) " R" (RTS $R) "
F" (RTF $f)))) !
 (T !
 (WRITE (STRCAT (NTXT) "G02 X" (RTS $X) " Y" (RTS $Y) " I" (RTS $I) "
J" (RTS $J) " F" (RTF $f)))) !
) !
)

Example 3:!
This is a more compact example that make the same result as Example 2

(DEFUN arc () !
 (WRITE (STRCAT (NTXT) (IF $ccw "G3 X" "G2 X") (RTS $x) " Y" (RTS $y) !
 (IF $short (STRCAT " R" (RTS $r)) (STRCAT " I" (RTS $i) " J" (RTS $j))) "
F" (RTF $f))) !
)

CHBARGRAM
This event controls the cutting pressure and the abrasive amount in a waterjet cutting system. In many cases
the pressure and the abrasive amount are changed at the same time, of this reason we have put this two
different options in the same function. !
Following variables are available:

$bar Int The pressure in bar.

$barrel Int The pressure difference between old and new pressure. The value is positive on
increased pressure else negative.

$bleed Bool T if the pump has a bleed valve to reduce the pressure, else this variable is nil.

$chbar Bool T if the bar should be changed else the variable is nil.

$chgram Bool T if the amount of abrasive should be changed else the variable is nil.

! 66

Note! This function is not used as a main switch for if abrasive should be used or not. !
Example: When changing between marking with pure water and cutting with abrasive. In that case use the
variable $useabr that are available in the PIERCING and CUTOFF functions.
In the example we have just take some randomly codes. They have following meaning: !
M70 Start pump, M71 Pump off, M72 Decrease pressure, M73 Increase pressure, M74 Low pressure, M75 High

$clean Bool T if the nozzle must be cleaned before marking else nil. This is only happen if
abrasive has been used and the nozzle now should be use for marking without
abrasive. The Rapid function has already moved the nozzle to a good X, Y position
for cleaning.

$delay Real Delay time for the pump to reduce or increase the pressure.

$gram Int The amount of abrasive per minute. If no abrasive should be used than the value is
0.

$gramrel Int The different between the amount of gram used before and the new value. The
value is positive if the amount of abrasive is increasing and negative if the amount of
abrasive is reducing.

$high Bool This variable is only needed if the pressure can be controlled in two steps
($variable=nil). $high is T if the pressure is the highest else itÕs nil.

$init Bool If itÕs the first initialization of the pressure or abrasive amount then the variable is T
else itÕs nil.

$lbs Real The amount of abrasive per minute. If no abrasive should be used then the value is
0. ($lbs = $gram /453.5934).

$msg String An automatic generated text string that can be added to the CNC-file as a comment.
The different text can be:
When starting the pump: "PUMP ON".

When changing pressure and abrasive amount at the same time: "BAR:nnn GRAM

nnn".
When changing only the pressure: "BAR:nnn".
When changing only the abrasive amount "GRAM:nnn".

$psi Int The pressure in PSI ($psi = $bar*14.50326).

$reason Int 1. Start pump, manually pressure.
2. Start pump in high/low pressure.
3. Start pump in variable pressure.
4. Change variable pressure.
5. Change high/low pressure.
6. Change variable pressure and variable abrasive.
7. Change high/low pressure and variable abrasive.
8. Change variable abrasive.
9. Turn off pump.
10. Change pressure and abrasive manually.
11. Change pressure manually.
12. Change abrasive manually.

$reduce Bool T if the pressure should be reduced by opening the jet. The Rapid function has
already moved the nozzle to a good X, Y position to reduce the pressure. If the
machine has a bleed valve then this variable always nil.

$variable Bool T if the pressure is variable controlled, nil if the pressure can be controlled in two
step.

! 67

Pressure, S Abrasive amount in gram, !
P Pressure in bar.

Example:

(DEFUN chbargram () !
 (COND !
 ((= $reason 1) !
 (WRITE (STRCAT (NTXT) "M70 (START PUMP)"))) !
 ((= $reason 2) !
 (WRITE (STRCAT (NTXT) (IF $high "M75 (SET HIGH PRESSURE)" "M74 (SET LOW
PRESSURE)"))) !
 (WRITE (STRCAT (NTXT) "M70 (START PUMP)"))) !
 ((= $reason 3) !
 (WRITE (STRCAT (NTXT) "P" (ITOA $bar) " (SET " (ITOA $bar) " BAR)")) !
 (WRITE (STRCAT (NTXT) "M70 (START PUMP)"))) !
 ((= $reason 4) !
 (WRITE (STRCAT (NTXT) "P" (ITOA $bar) " (SET " (ITOA $bar) " BAR)")) !
 (WRITE (STRCAT (NTXT) (IF (MINUSP $barrel) "M72 (DECREASE PRESSURE)"
"M73 (INCREASE PRESSURE)"))) !
 (DELAY $delay)) !
 ((= $reason 5) !
 (WRITE (STRCAT (NTXT) (IF $high "M75 (SET HIGH PRESSURE)" "M74 (SET LOW
PRESSURE)"))) !
 (DELAY $delay)) !
 ((= $reason 6) !
 (WRITE (STRCAT (NTXT) "S" (ITOA $gram) " (SET " (ITOA $gram) " GRAM)")) !
 (WRITE (STRCAT (NTXT) "P" (ITOA $bar) " (SET " (ITOA $bar) " BAR)")) !
 (WRITE (STRCAT (NTXT) (IF (MINUSP $barrel) "M72 (DECREASE PRESSURE)"
"M73 (INCREASE PRESSURE)"))) !
 (DELAY $delay)) !
 ((= $reason 7) !
 (WRITE (STRCAT (NTXT) "S" (ITOA $gram) " (SET " (ITOA $gram) " GRAM)")) !
 (WRITE (STRCAT (NTXT) (IF $high "M75 (SET HIGH PRESSURE)" "M74 (SET LOW
PRESSURE)"))) !
 (DELAY $delay)) !
 ((= $reason 8) !
 (WRITE (STRCAT (NTXT) "S" (ITOA $gram) " (SET " (ITOA $gram) " GRAM)"))) !
 ((= $reason 9) !
 (WRITE (STRCAT (NTXT) "M71 (TURN OFF PUMP)"))) !
 ((= $reason 10) !
 (WRITE (STRCAT (NTXT) "M00 (SET " (ITOA $bar) " BAR " (ITOA $gram) "
GRAM)"))) !
 ((= $reason 11) !
 (WRITE (STRCAT (NTXT) "M00 (SET " (ITOA $bar) " BAR)"))) !
 ((= $reason 12) !
 (WRITE (STRCAT (NTXT) "M00 (SET " (ITOA $gram) " GRAM)"))) !
) !
)

If the machine must reduce the pressure then the variable $reduce is T. If the machine should change from
using abrasive to marking without abrasive then the variable $clean I T.
If you want to move the jet to a position that earlier has been used as piercing position and at that point open
the jet for cleaning or for reducing the pressure then you can call a predefined function called CleanAndReduce
Example:

(IF (OR (AND $reduce (NOT $bleed)) $clean) (CleanAndReduce))

The CleanAndReduce function will use a series of instructions RAPID, JETDOWN, PIERCING, DELAY, CUTOFF
and JETUP.

! 68

CHMODE
This event is called in the beginning of the CNC-file initialize a working mode. The event is called every time the
machine change working mode and the event can be use to initialize different options in the machine.
Following variables can be used:

Example:

(DEFUN chmode () !
 (COND !
 ((NOT $mold) nil) !
 ((= $mold 0) (WRITE (STRCAT (NTXT) "(END OF MEASURE SECTION)"))) !
 ((= $mold 1) (WRITE (STRCAT (NTXT) "(END OF DRILLING SECTION)"))) !
 ((= $mold 2) (WRITE (STRCAT (NTXT) "(END OF MARKING SECTION)"))) !
 ((= $mold 3) (WRITE (STRCAT (NTXT) "(END OF PRE-PIERCING SECTION)"))) !
 ((= $mold 4) (WRITE (STRCAT (NTXT) "(END OF CUTTING SECTION)"))) !
) !
 (COND !
 ((= $mode 0) (WRITE (STRCAT (NTXT) "(START OF MEASURE SECTION)"))) !
 ((= $mode 1) (WRITE (STRCAT (NTXT) "(START OF DRILLING SECTION)"))) !
 ((= $mode 2) (WRITE (STRCAT (NTXT) "(START OF MARKING SECTION)"))) !
 ((= $mode 3) (WRITE (STRCAT (NTXT) "(START OF PRE-PIERCING SECTION)"))) !
 ((= $mode 4) (WRITE (STRCAT (NTXT) "(START OF CUTTING SECTION)"))) !
) !
)

The variables $mold and $mode remains unchanged. This means that the value can be used by other functions.

CHTOOL
The CHTOOL function is used for changing active cutting tool or/and change the distance between the tools.
The function will never be called if the machine has only one tool.
Following variable can be used:

$mold Int The variable handle the previous working mode
nil=First time the event is called, this variable is always nil.
0=End of measure mode.
1=End of drilling mode.
2=End of marking mode.
3=End of pre-piercing mode.
4=End of cutting mode.

$mode Int The variable means following.
0=Start measure mode.
1=Start drilling mode.
2=Start marking mode.
3=Start pre-piercing mode.
4=Cutting mode.

Variable Type Description

$activectrl Bool If the control of active tools can be handled by the CNC then this variable is T. If the
distance must be handled manually then the variable is nil.

$chactive Bool T if active tool should be changed else the variable is nil.

$chdist Bool T if the distance between tools should be changed, else this variable is nil

$distctrl Int If the distance between each tool can be handled by the CNC then this variable is T.
If the distance must be handled manually then the variable is nil.

! 69

Example 1:!
In this example we use the $reason variable to handle all options. $reason 8
and 9 is calling recursive to avoid writing the same information more than one
time.

(DEFUN chtool (/ txt ddress dist count) !
 (COND !
 ((= $reason 1) ; Tool initialization !
 (WRITE (STRCAT "(TOOL INITIALIZON IS SKIPPED)"))) !
 ((= $reason 2) ; Change active tools manually !

$feed real Speed for the tool distance change on the cross beam in mm/min

$index Int Increasing value that starts on 0 and is increased by 1 for each tool change

$maxdist real Maximum distance between the tools

$maxtools int Number of tools on this machine.

$mindist real Minimum distance between the tools

$msg String An automatic generated text with information of tool distances and active tools.

$msgactive String An automatic generated text message with information about active tools.

$msgdist String An automatic generated text message with information about distance between
tools

$offset Real Normally all coordinates refer to the first Tool. If this tool is not in use then this
value contains the distance to the first used tool.

$pack Bol If the outermost not used tools should be packed as closed as possible. This will
increase the active cutting area on the machine.

$parking Bol If tools that are not in use should be parked in a non moving position at the very
end of the cross beam.!
nil=Do not park, T=Park.

$reason Int 1=Flag for Skip tool init" This is the first tool initialization. !
This flag is 1 if itÕs the tool initializing and if tool nr 1 is used in that case. If you
start with more than one tool then this flag is not 1.
2=Change active tool manually.
3=Change active tool by CNC.
4=Change distance between tool manually.
5=Change distance between tool by controller.
6=Change distance and active tool manually.
7=Change distance manually and active tool by CNC.
8=Change distance by CNC and active tool manually.
9=Change distance and active tool by CNC.

$skip Bool If the toggle "Skip tool init" is activated.

$tooldist real Distance between each activated used cutting tool.

$toollist List A list of distances between each tool.

$tools Int A bit coded value that controls what tools should be active (ON).
1=T1 2=T2 4=T3 8=T4 16=T5 32=T6 64=T7 128=T8
The summary of the value controls active tools.
Example: 11=(1+2+8)=T1+T2+T4

$x Real First coordinate that will be used after the CHTOOL function.

$y Real First Y coordinate that will be used after the CHTOOL function.

! 70

 (WRITE (STRCAT (NTXT) "M00 (" $msgactive ")"))) !
 ((= $reason 3) ; Change active tools by CNC !
 (WRITE (STRCAT (NTXT) "T" (ITOA $tools) " (" $msgactive ")"))) !
 ((= $reason 4) ; Change distance between tools manually !
 (WRITE (STRCAT (NTXT) "M00 (" $msgdist ")"))) !
 ((= $reason 5) ; Change distance between tools by CNC !
 (SETQ txt "M50") !
 (SETQ address (LIST " #100=" " #101=" " #102=" " #103=")) !
 (SETQ count 0) !
 (WHILE (SETQ dist (NTH count $toollist)) !
 (SETQ txt (STRCAT txt (NTH count address) (RTS dist))) !
 (SETQ count (1+ count)) !
) !
 (WRITE (STRCAT (NTXT) txt " (" $msgdist ")"))) !
 ((= $reason 6) ; Change distance and active tools manually !
 (WRITE (STRCAT (NTXT) "M00 (" $msg ")"))) !
 ((= $reason 7) ; Change distance manually and active tool by CNC !
 (WRITE (STRCAT (NTXT) "M00 (" $msgdist ")")) !
 (WRITE (STRCAT (NTXT) "T" (ITOA $tools) " (" $msgactive ")"))) !
 ((= $reason 8) ; Change distance by CNC and active tool manually !
 (SETQ $reason 5) !
 (CHTOOL) !
 (SETQ $reason 2) !
 (CHTOOL)) !
 ((= $reason 9) ; Change distance and active tool by CNC !
 (SETQ $reason 5) !
 (CHTOOL) !
 (SETQ $reason 3) !
 (CHTOOL)) !
) !
)

Example 2: !
This example has the same functionality, but use other variables.

CleanAndReduce
This function generates a movement, open the jet for cleaning or for reducing the pressure. Se the function
CHBARGRAM for more information.

CUTOFF
This event should always be added to the postprocessor. It turns of the cutting and the marking (if the cutting
tool is used for marking).
The function can use following variables:

$chkerf Bool This variable is T if the kerf should be changed else this variable is nil

$delay Real This variable controls the delay between abrasive and water off.

$kerf Int If $chkerf is T then the variable handle what the kerf should be changed to. !
If $chkerf is nil then the variable shows the actual kerf.
0=No kerf (G40), 1=Right side (G41), 2=Left side (G42)

$marking Bool The variable is T if the cutoff belongs to a marking else this variable is nil

$time Real Delay time after the jet has been turned off.

$tools Int A bit coded value that controls what tools should be activated or deactivated.

$useabr Bool This variable is T if abrasive is used else this value is nil.

! 71

Sample 1

(DEFUN cutoff() !
 (WRITE (STRCAT (NTXT) (IF $marking "(MARKING OFF)" "(CUTTING OFF)"))) !
 (IF (AND $useabr $wacode) !
 (PROGN !
 (WRITE (STRCAT (NTXT) "M7" (MSG "(ABRASIVE OFF)"))) !
 (DELAY $delay)) !
) !
 (WRITE (STRCAT (NTXT) "M5" (MSG "(WATER OFF)"))) !
 (DELAY $time) !
 (IF $chkerf (WRITE (STRCAT (NTXT) "G4" (ITOA $kerf)))) !
)

Sample 2:

(DEFUN cutoff() !
 (IF (> (LOGAND $tools 1) 0) (WRITE (STRCAT "SETBIT A2.1=1"))) ;Turn Off Jet
1!
 (IF (> (LOGAND $tools 2) 0) (WRITE (STRCAT "SETBIT A2.2=2"))) ;Turn Off Jet
2!
 (IF (> (LOGAND $tools 4) 0) (WRITE (STRCAT "SETBIT A2.3=3"))) ;Turn Off Jet
3!
 (IF (> (LOGAND $tools 8) 0) (WRITE (STRCAT "SETBIT A2.4=4"))) ;Turn Off Jet
4!
 (DELAY $time) !
)

DRILLING
This event activate the drilling cycle. The drilling tool is already in position for drilling.

FOOTER
This function are the last function that will be called while the CNC-file is open. Following variable can be used.

$wacode Bool This variable is T the controller is using different codes for abrasive and water off.

$drillbytype int By this variable you can read what kind of optimizing the drilling sequences is set
to: !
0=Sheetwice, 1=Toolwice, 2=Partwice, 3=No optimation.
When using number 3 (No optimizing), then the PIERCING will set the variable
$ptype to 4.

$holediameter Real If the drilling is made with the HOLE command and the source is a circle then ths
variable is the diameter of the circle. When the drilling is done for piercing or if the
source is not a circle then the value is 0.

$drillfeed Real Drilling feed in mm/min (this variable is available also in the header).

$drillmax Int Number of drillings made together in this sequence.

$drillnum Int First drilling will have number 1 the second number 2 and so on.

$drillrpm Int Revolutions per minute (this variable is available also in the header).

$drillstep Real Drilling step (this variable is available also in the header).

$f Real Drilling feed in mm/min

$x Real The X-coordinate for the drilling position.

$y real The Y-coordinate for the drilling position.

! 72

The function MRAPID can be called from the footer function.
Example: !
(DEFUN footer() !
 (MRAPID) !
 (WRITE (STRCAT (NTXT) "(SECONDS " (ITOA $runsec) ")")) !
 (WRITE (STRCAT (NTXT) "(USED TIME " $runtime ")")) !
 (WRITE (STRCAT (NTXT) "(IGEMS:" $igems " POST:" $post " Date:" datum ")"))) !
 (WRITE (STRCAT (NTXT) "M30")) !
 (WRITE "%") !
)

FINAL
This function is called after that all postprocessing has been executed and the CNC-file is closed.

FMODE
This function handles different feed rate modes.
The function has following variables:

Note!!
The variable $flin can be used in other function. ItÕs nil if FLIN in not activated. In all other cases it is 0, 1 or 2.

HEADER
If you want to take care of this event then you must include a function in the postprocessor with the name
HEADER. The header event is always called at the beginning of the postprocessing. The function can be used to
view information, initialize values, and set default values for G and M-codes. The function can use following
variables.

$runsec Int Theoretical estimated time for the machine to do the job.

$runtime String The values above converted to a string

$igems String This is a string with the version of IGEMS.

$post String This is a string with the name of the postprocessor

$x Real The X-coordinate for the parking position. This coordinate are not transformed. ItÕs
exactly the value that are set in the strategy.

$Y Real The Y-coordinate for the parking position. This coordinate are not transformed. ItÕs
exactly the value that are set in the strategy.

$flin Int The variable can have following settings:
0=Flin main switch. Flin should be deactivated
1=Flin main switch. Flin should be activated, next movements has different start and
end speed.
2=Next movement have another start speed than last movements end speed.

$fe Real The cutting speed at the end of next object.

$fs Real The cutting speed at the beginning of next object.

$abrasive String This variable has the name of the Abrasive Quality. If itÕs not a waterjet machine
then this variable will be empty "".

$abrasiveflow Int Amount of abrasive in gram (note in the strategy setting)

! 73

$abs Bool T if the coordinate are in Absolute mode (G90) and nil if the coordinate are in
incremental mode (G91)

$alloy String This is the Material Quality.

$box List This is a list of 4 reals that describe a rectangle area that can include all parts. !
(X-lower left, Y-lower left, X-upper right, Y-upper right)

$cando5x Bol T if the machine have possibilities to cut 5X cutting else nil. See also the variable
$uses5x.

$cpfeed Real Velocity for circular piercing in mm/min.

$cpradius Real Radius for circular piercing. The value describe the movement of the tool.

$cptime Real Time in seconds for circular piercing.

$cpturns Real Number of turns for circular piercing.

$cutbar Int Pressure for cutting in AWJ cutting and Pure waterjet cutting.

$cutflow Int Amount of abrasive for cutting in gram/min.

$cuttingupz real The value for the lift height between cuttings (checking what's possible).

$date String The date in the format at used in current country.

$digfile String The name if the actual drawing. If the file is saved then drive and path are
included in the name.

$drillbytype Int 0=Sheetwice drilling.
1=Toolwice drilling.
2=Partwice drilling.
3=No optimizing, the drilling will be make at the Cuton function.

$drillfeed Real Feed for drilling.

$drillrpm Int Rpm for drilling tool.

$drillstep Real Drilling step.

$drillupz real The value for the lift height between drilling positions (checking what's possible).

$f Real Fixed speed for AWJ and pure waterjet

$fine Real Cutting speed for fine quality (see also $xrough, $rough, $medium and $xfine).

$fnumber Int When using numbers as name of the NC-file then this variable contains that
number. If you use the drawing name as default filename or typing a filename that
cant be converted to number then this value will be 1000.

$group String This is the material group.

$highbar Int The highest bar of $markbar, $piercbar and $cutbar in AWJ-cutting (for machines
that only support two different pressures) (*)

$highflow Int The highest amount of abrasive used on the job. (For machines that only support
two different levels of abrasive).

$kerfsize Real This is the tool radius if the kerf should be handled completely in the controller.

! 74

$kinematic Int This variable shows how the tiltangles are calculated on 5-axis machines.!
0=No 5-axis cutting head is configured.
1=Control by motor axis
2=Major axis in direction of cutting, second axis is the cutting angle.
3=Major axis in direction of jet, second axis is the cutting angle.

$lowbar Int The lowest bar of $markbar, $piercbar and $cutbar in AWJ-cutting (for machine
that only support two different pressures) (*)

$lowflow Int The lowest amount of abrasive used on this job. (For machines that only support
two different levels of abrasive).

$machine String This is the name of the Machine Setup

$machinetype Int 0=AWJ, 1=Pure water, 2=Plasma, 3=Oxyfuel, 5=Laser.

$markbar Int Pressure for markings in AWJ-cutting(*)

$markbytype Int 0=Sheetwise marking.
1=Toolwise marking.
2=Partwise marking.
3=No optimizing, the marking will be done in the order of the programmed
toolpath.

$markflow Int Amount of abrasive for marking in gram/min.

$markupz real The value for the lift height between markings (checking what's possible).

$maxslope Real Maximum cutting angle that will be used on entire job. Note! This variable has
another meaning in the Piercing function. The value is not negative and in degree.

$maxspeed Real Maximum speed used in the program

$maxtilt Real Maximum tilting angle for the 5-axis cutting head. If No 5-axis head is configured
then this value is 0. The value is in degree.

$maxtools Int Number of cutting tools

$medium Real Cutting speed for straight cut in medium quality (see also $xrough, $rough, $fine
and $xfine).

$metric Bool T on Metrical units and nil if Imperial mode (inches)

$minspeed Real Minimum speed used by the program

$name String The name of the CNC-file.

$nlines Bool The variable I T if line number should be used else nil.

$orifice Real Diameter of the Orifice

$partupz real The value for the lift heigt between parts (checking what's possible).

$piercbar Int Pressure for piercings in AWJ cutting(*)

$piercebytype Int 0=Sheetwise pre-piercing.
1=Toolwise pre-piercing.
2=Partwise pre-piercing.
3=No optimizing, the pre-piercing will be done together with the cutting of the
geometry by the Cuton function.

$piercflow Int Amount of abrasive for piercing in gram/min.

$piercupz real The value for the lift height between piercings (checking what's possible).

! 75

$pstat Real Piercing time for stationary piercing in seconds

$rough Real Cutting speed for straight cut in rough quality (see also $xrough, $medium, $fine
and $xfine).

$sensordist Real The distance between each measurement. If no stamping sensor is activated then
this value is 0.

$sensorminlift Real The minimum lift height from material when using hight sensor.

$sensormode Int If the value is:
-1= No Sensor should be used at all.
0 = Sheetwise measure. The sensor is measure the height once in the beginning
of the CNC-file.
1 = Partwice measure. The height sensor is measure the height once at every
part.
2= Dragging sensor. The measurement is done all time.
3= Stamping sensor. The measurements are by a curtain distance.

$sensorsec Real The time in second between each measurement. The time is based on straight cut
in medium quality. If no stamping sensor is activated then this value is set to 0.

$sheetx Real Size of the sheet in X direction (CAD coordinates). If no sheets are in use then the
value is 0.

$sheety Real Size of the sheet in Y direction (CAD coordinates). If no sheets are in use then the
value is 0.

$speedmarking Real Speed that will be used for marking

$speedrapid Real Speed that will be used for Rapid movements in X and Y

$standoff Real Stand of value from the strategy settings. This value is not automatically added to
Z values, it have to be done in the postprocessor.

$thickness Real The thickness of the material.

$time String The actual time

$toolchanges Int Number of tool setups. Minimum is 1.

$tube Real Diameter of mixing tube

$type Int Machine type: 0=AWJ, 1=Pure water, 2=Plasma, 3= Oxyfulel, 4=Laser

$uses5x Bool T if 5X cutting will be used in the actual process

$usesdrill Bool T if a drill will be used in the actual process.

$xfine Real Cutting speed for straight cut in X-fine quality (see also $xrough, $rough,
$medium and $fine).

$xrough Real Cutting speed for straight cut in X-rough quality (see also, $rough, $medium, $fine
and $xfine).

$z Real This value is initialized to the lift height that is used between parts.

$zmaxmove Real The maximum accepted Z-movement from machine table to upper position.

$zmaxzaxis int Number of movable Z-axis

! 76

(*) In pure waterjet cutting this variable is set to the same value as $cutbar

Example 1:

(DEFUN header() !
 (WRITE "%") !
 (WRITE (STRCAT (NTXT) "G40")) !
)

Example 2:

(DEFUN header() !
 (WRITE (STRCAT (NTXT) "(FILE: " $name ")")) !
 (WRITE (STRCAT (NTXT) "(MATR: " $Group "/" $alloy "/" (RTS $thickness) ")")) !
 (WRITE (STRCAT (NTXT) "(DRAWING: " $digfile ")")) !
 (WRITE (STRCAT (NTXT) "(DATE: " $date ")")) !
 (WRITE (STRCAT (NTXT) "(MACHINE: " $machine ")")) !
 (WRITE (STRCAT (NTXT) (IF $metric "G71" "G70"))) !
 (WRITE (STRCAT (NTXT) (IF $abs "G90" "G91"))) !
 (WRITE (STRCAT (NTXT) "G40 G00")) !
)

This could generate a CNC-file like follows:

(FILE: P277)!
(MATR: INOX/Standard/20)!
(DRAWING: C:/R10-IDE/SAMPLE.dig)!
(DATE: 2011-01-18)!
(MACHINE: IGEMS)!
G71!
G90!
G40 G00!

LINE
This is the basic movement event. All other movements can be with lines.
The function can use following variables:

$zmode Int The $zmode have following meaning.
0=Fixed Z-axis.
1=Automatic, Up/Down controlled by water On/Off.
2=Up/Down with separate M-codes.
3=Up/Down controlled by Z-coordinates.
4=Automatic Height sensor that are controlled by water On/Off.
5=Height sensor that are controlled by M-codes.
6=Height sensor that are controlled by Z-coordinates.
7=By measuring probe information.

$a R
e
al

The angle in radians of the
major axis. If no 5-axis
equipment are in use this
variable is always 0.

$a
mot
or

R
e
al

The angle in radians of the
major axis. The value is always
in motor degree.

$ab B
o
ol

T if the movement have any A
or B information else the
variable is nil.

! 77

$b R
e
al

The angle in radians of the
minor axis. If no 5 axis
equipment are in use this
variable is always 0

$b
mot
or

R
e
al

The angle in radians of the
minor axis. The value is always
in motor degree.

$de
lta

R
e
al

This value describes the
tangential angle between
current LINE and next
movement. The value is 0 if
next movement is in same
direction. ItÕs negative is next
movement start in minus
relative direction. ItÕs positive if
next object start in positive
relative direction. The value is
always between ÐPI to +PI

$f R
e
al

Current speed for this line in
mm/min (this value can
normally be used).

$fe R
e
al

The cutting speed at the end
of the movement.

$fla
g

In
t

This is a bit value with
following meaning:
1=Belongs to a lead-in
2=Belongs to a lead out
4=Belongs to marking
8=Belongs to circular piercing
16
32
64=Belongs to a custom line.

$fs R
e
al

The cutting speed at the start
of the movement.

$ke
rf

In
t

Actual kerf: 0=No kerf (G40),
1=Tool on right side (G41),
2=Tool on left side (G42)

$le
n

R
e
al

The length of the arc.

$sl
ope

R
e
al

The max cutting angle at this
position. Vertical is 0.0 The
angle is caclulated in the
vector direction as radians.

Real The max cutting angle at this
position. Vertical is 0.0 The
angle is caclulated in the vector
direction.

! 78

!
Example:

(DEFUN line (/ extra) !
 (IF $zref (SETQ extra(STRCAT " Z#" (ITOA $zref))) (SETQ extra "")) !
 (IF $chkerf !
 (WRITE (STRCAT (NTXT) "G1 G4" (ITOA $kerf) " X" (RTS $x) " Y" (RTS $y)
extra " F" (RTF $f))) !
 (WRITE (STRCAT (NTXT) "G1 X" (RTS $x) " Y" (RTS $y) extra " F" (RTF $f))) !
) !
)

If you are using a cutting speed interpolation, then you can use the variables $fs and $fe . By comparing these
values you can calculate if the cutting speed on the line is in retardation or in acceleration mode or if the cutting
speed is the same for the whole object.
The values ($X, $Y) are transformed according to the Axis direction settings in the Machine setup.

MARKON
This function is used for activate marking if the machine is equipped with a special marking tool. If the cutting
tools are used for marking then the normal PIERCING function are used.
Add information about $useawj $wacode

MEASURE
This function is called if the option "Height measuring" is activated. !
The idea is that the machine will measure the height on the given positions and that the height is stored in the
controller memory for later use during the cutting. The method is often used on 5-axis cutting machines that
canÕt use a height sensor during the cutting.!
The function can use following variables.

Example:

$ve
ctor

lis
t

A list of three values that
describe the direction of the
jet. Example: (0 0 -1)

$x R
e
al

The X-coordinate of the
endpoint of the movement.

$y R
e
al

The Y-coordinate of the
endpoint of the movement.

$zr
ef

In
t

This variable is nil if no pre-
measuring tool are used. In
other case itÕs an integer that
refers to that measure point
that is measured by the
MEASURE function.

$x Real The X-coordinate of the endpoint of the movement.

$y Real The Y-coordinate of the endpoint of the movement.

$zref Int This variable is index that counts up by one for each point. The index starts with 0 or
1 for each new measuring sequence.

! 79

(DEFUN measure () !
 (WRITE (STRCAT (NTXT) "G00 X" (RTS $x) " Y" (RTS $y))) !
 (WRITE (STRCAT (NTXT) "MEASURE(" (ITOA $zref) ")")) !
 (SIM-DELAY 2.5) ; Add 2.5 second to the simulation, reports and cost
calculation !
)

The function could generate following CNC-file.
N12 G00 X200.513 Y201.678!
N13 MEASURE(1)!
N14 G00 X200.000 Y101.780!
N15 MEASURE(2)!
N16 G00 X200.000 Y2.000!
N17 MEASURE(3)!
N18 G00 X102.000 Y0.000!
N19 MEASURE(4)!

MRAPID
This event should move the tools to the X,Y position using the machine coordinate system.

!
PART
This event gives information about the part that now will be in use.
Following variables can be used:

!!
$partname, $customer and $partdate. All data is from the information added when the part was created.

Example:

(DEFUN part() !
 (WRITE (STRCAT (NTXT) "($name " " $customer " " $date ")")) !
)

PIERCING
This event is used to turn ON the cutting or the marking process (see also MARKON).

$x Real The X-coordinate of the endpoint of the movement. This value is not transformed

$y Real The Y-coordinate of the endpoint of the movement. This value is not transformed

$reason Int This value have following meaning:
1=If the MRAPID is called because it's go to service position before 5x-cutting
2=If the MRAPID is called on making a Parking position

$partname String The name of the part as defined in Create part

$customer String The name of the customer as defined in Create part

$partdate String The date as defined in Create part

$quantity Int Number if parts defined in Create part.

$connected Bool If the tool path is connected with the part

$partid Int The ID the part

$box list A list of four reals that describe LoweLeft corner and Upper Right corner (X Y X Y)!
NOT IMPLEMENTED BUR VERY EASY TO DO

$orderattrib String The attribute added on the part in the Order command.

! 80

To be able to use this event a function named PIERCING must be implemented in the post.
Following variables are available:

$ab Bool T if the movement have any A or B information else the variable is nil.

$circ Bool If circular piercing should be used or not.

$cpfeed Real The velocity used in circular piercing.

$cpradius Real This is the movement radius that should be used for circular piercing.

$cpturns Real Number of turns that should be used for circular piercing

$ctype Int 1: Tilted piercing!
2: Tilted cutting (bevel mode is top, bottom or advanced) !
4: Top bevel!
8: Bottom bevel!
16: Ruled bevel.

$delay Real Delay between water and abrasive on.

$external Bool T if the piercing belong to an external geometry else nil

$high Bool If the piercing is made with the same pressure as cutting then variable is T else nil.

$kerf Int The variable give information about the kerf that will be used after the piercing is
finish. 0=No kerf, 1=Left (G41), 2=Right (G42)

$lowhigh Bool If it's a low pressure piercing without optimizing.

$maxslope Real Maximum cutting angle that will be used on actual geometry. Note! This variable has
another meaning in the Header function. The value is not negative and in degree.

$marking Bool The variable is T if the cutoff belongs to a marking else this variable is nil

$pstat Real Piercing time on for stationary piercing (you can normally use $time that have the
time for the actual piercing type).

$ptype Int The piercing type:
-2=Point marking
-1=Marking
0=Blind lead
1=Linear piercing
2=Stationary piercing
3=Circular piercing
4=Drilling with no optimizing (Se also the drilling function)
5=Air start
6=User
(The piercing type 4 means drilling and it do not use the Piercing function, it use the
drilling function.)

$starttan Real Angle of the first cutting direction on the geometry. Note this value is in radians.

$time Real The time for the piercing or the delay time after the jet has been turned on (this can
normally be used).

$useabr Bool Is T if abrasive should be used else nil

$wacode Bool Is T if different codes should be used for Abrasive and water on. Is nil if only one
code should be used.

! 81

Example 1:!
This example will create a circular piercing by adding normal G1, G3 codes.
This will be done by the internal function (CIRC-PIERCING).

(DEFUN piercing() !
 (WRITE (STRCAT (NTXT) "(PIERCING TYPE " (ITOA $ptype) ")")) !
 (COND !
 ((AND $useabr $wacode); If abrasive should be used and the machine use
different codes for water and abrasive !
 (WRITE (STRCAT (NTXT) "M4 (WATER ON)")) !
 (DELAY $delay) !
 (WRITE (STRCAT (NTXT) "M6 (ABRASIVE ON)"))) !
 ($useabr ; If abrasive should be used !
 (WRITE (STRCAT (NTXT) "M10 (WATER AND ABRASIVE ON)"))) !
 (T ; If no abrasive should be used !
 (WRITE (STRCAT (NTXT) "M4 (WATER ON)"))) !
) !
 (IF $circ !
 (CIRC-PIERCING) ; Use circular piercing. IGEMS will add all needed
movements automatically. !
 (DELAY $time) ; If not using circular piercing, then add a delay time !
) !
) !
The example above will generate a CNC-file as below.

N19 (PIERCING TYPE 3)!
N20 M4 (WATER ON)!
N21 G04 F1.1!
N22 M6 (ABRASIVE ON)!
N23 G01 X130.016 Y164.665 F273!
N24 G03 X128.616 Y164.665 I-0.7 J0 F273!
N25 G03 X130.016 Y164.665 I0.7 J0 F273!
N26 G03 X128.616 Y164.665 I-0.7 J0 F273!
N27 G03 X130.016 Y164.665 I0.7 J0 F273!
N28 G03 X128.616 Y164.665 I-0.7 J0 F273!
N29 G03 X130.016 Y164.665 I0.7 J0 F273!
N30 G03 X128.616 Y164.665 I-0.7 J0 F273!
N31 G03 X130.016 Y164.665 I0.7 J0 F273!
N32 G03 X128.616 Y164.665 I-0.7 J0 F273!
N33 G03 X130.016 Y164.665 I0.7 J0 F273!
N34 G03 X128.616 Y164.665 I-0.7 J0 F273!
N35 G03 X130.016 Y164.665 I0.7 J0 F273!
N36 G03 X128.616 Y164.665 I-0.7 J0 F273!
N37 G03 X130.016 Y164.665 I0.7 J0 F273!
N38 G03 X128.616 Y164.665 I-0.7 J0 F273!
N39 G03 X130.016 Y164.665 I0.7 J0 F273!
N40 G03 X129.202 Y165.356 I-0.7 J0 F273!
N41 G01 X129.316 Y164.665 F273!
N42 G01 G41 X130.968 Y168.308 F34.8!

Example 2:!
If you prefer a more compact CNC-code, then you can replace the (CIRCULAR-
PIERCING) function as following example that is made for a Fanuc controller.

 (IF $circ !
 (PROGN !
 ($CLINE $cpradius 0 $cpfeed); Generate a line (G1) with this length !
 (WRITE (STRCAT (NTXT) "#100=" (ITOA $cpturns))); Set the variable #100
to the number of turns !
 (SETQ nline $nnext); Save next N number in a variable !
 ($CCIRCLE (- $cpradius) 0 $cpfeed); Generate a circle !
 (WRITE (STRCAT (NTXT) "#100=[#100-1]")); Decrease the variable #100 by 1 !
 (WRITE (STRCAT (NTXT) "IF[#100 GT 0] GOTO " (ITOA nline))); If #100 > 0
then jump back to $CCIRLE line !
 ($CLINE (- $cpradius) 0 $cpfeed)); Generate a line back to start point !
 (DELAY $time))

N19 (PIERCING TYPE 3)!

! 82

N20 M4 (WATER ON)!
N21 G04 F1.1!
N22 M6 (ABRASIVE ON)!
N23 G01 X130.016 Y164.665 F273!
N24 #100=8!
N25 G03 X128.616 Y164.665 I-0.7 J0 F273!
N26 G03 X130.016 Y164.665 I0.7 J0 F273!
N27 #100=[#100-1]!
N28 IF[#100 GT 0] GOTO 25!
N29 G01 X129.316 Y164.665 F273!
N30 G01 G41 X130.968 Y168.308 F34.8!

The functions $CLINE and $CCIRCLE use the LINE and ARC functions to add the G01 and G03 movements.

System variables for Piercing
By using following system variables you can override the information in the material setting.

!
Different machine types use different piercing types

Piercing and leads
Following piercing methods should be supported.

When switching between machine types, and the piercing type is not supported then it will use the bold type. !
* In the CAM system the internal handling is like Circular/Normal. The area around the piercing is checked to
not be to close the part or neighbors. The Circle/Normal method can be used in the CAM-system.
** While postprocessing the method number 3 is changed to method number 2. The method used in the
machine is Stationary but circular in the software. !
QUALITY
This function is always activated before the PIERCING function. It can also be used during the cutting. In most
controllers we donÕt need this event.

AWJStationaryPiercing Real Piercing time for stationary piercing.

*AWJCircularPiercingSpeed
*

Real Velocity for circular piercing in mm/min

PiercingDiameter Real The diameter of the movement for circular piercing. Note! By increasing
the value you the piercing may damage some parts on the drawing.

AWJDelayAfterPiercing Real The shortest possible piercing time.

CustomCircularPiercing Bool Set this variable to T if you donÕt use the inbuilt function (CIRC-
PIERCING) in other case you will not have a correct simulation or time/
cost calculation.

Value Name in the CAM system AWJ Water Plasma Oxyfuel Laser

0 Contour start Y Y

1 Linear ramping (Direct start) Y Y

2 Stationary Y Y ** ** **

3 Circular (Name is normal for all types
except AWJ)

Y Y* Y* Y*

4 Drilled Y Y

5 Air start Y Y Y Y

6 User Y Y Y Y Y

! 83

The QUALITY function can use following variables:

Example:

(DEFUN quality () !
 (IF $chqua !
 (WRITE (STRCAT (NTXT) " (QUALITY CHANGED TO " (ITOA $qua) " DURING
CUTTING)")) !
 (WRITE (STRCAT (NTXT) " (QUALITY INITIALIZED TO " (ITOA $qua) " BEFORE
CUTTING START")) !
) !
)

RAPID
The rapid function is always activated to move the jet between different positions in non cutting mode.

Example:

(DEFUN rapid () !
 (WRITE (STRCAT (NTXT) "G00 X" (RTS $x) " Y" (RTS $y))) !
)

SRAPID
The SRAPID function handles the Start rapid points that can be entered from the part order command. The
function is called in the beginning of postprocessing.
The SRAPID function can use following variables.

The SRAPID will never be called to handle normal rapid events.

STOP
The stop event is used to generate a stop in the cutting process.
Following variables are available.

$initqua Bool If the quality command is called before the piercing (start quality). If this variable is T
then $chqua is nil and opposite.

$chqua Bool If the quality change is inside a geometry while the cutting process is active then the
variable is T else its nil.
If this variable is T then $initua is nil and opposite.

$qua Int The quality of the cut. 1=X-Rough, 2=Rough, 3=Medium, 4=Fine and 5 is X-Fine

$f Real Cutting speed for straight cut in selected quality

$fr Real The velocity for the movement in mm/min

$reason Int 0=Normal rapid
1=Manual rapid inserted in a part (only between cuttings)
2=Manual rapid inserted in the order command between the parts (only between
cuttings)
3=Rapid to a drilling point

$x Real The X-coordinate.

$y Real The Y-coordinate.

$attrib String This is a text string with the text attribute (used to handle different equipment)

$x Real The X-coordinate of the endpoint of the movement.

$y Real The Y-coordinate of the endpoint of the movement.

! 84

!
Example 1:!
This example will add M00 and a automatic generated message

!
(DEFUN stop () !
 (WRITE (STRCAT (NTXT) "M00 (" $msg ")")) !
)

Example 2:!
This example shows how the STOP event can be customized. Depending on the
$reason you can add different information to the CNC-file.

(DEFUN stop () !
 (COND !
 ((= $REASON 1) !
 (WRITE (STRCAT (NTXT) "M00 (STOP IN EDIT PART MESSAGE: " $msg ")"))) !
 ((= $REASON 2) !
 (WRITE (STRCAT (NTXT) "M00 (STOP IN ORDER MESSAGE: " $msg ")"))) !
 ((= $REASON 3) !
 (WRITE (STRCAT (NTXT) "M00 (STOP AFTER FIRST CUT)"))) !
 ((= $reason 4) !
 (WRITE (STRCAT (NTXT) "M00 (STOP AFTER FIRST PART)"))) !
 ((= $reason 5) !
 (WRITE (STRCAT (NTXT) "M00 (STOP BEFORE 5X-CUTTING)"))) !
) !
)

TEXT
Normally all text are generated with the configured marking device and then MARKON, LINES, ARCS MARKOFF
events are used in to generate the text. This event can be used if you want to use other equipment than the
normal marking device.
The event has following variables:

$msg String A text message that is added in the Edit toolpath or Order command or an automatic
generated text that comes from the stop options in the Method window.

$reason Int The reason value has following meaning:
1=A stop generated in the Edit part command.
2=A stop generated in the Order command.
3=If the option "Stop after first cut" is activated.
4=If the option "Stop after first part" is activated.
5=If the option "Always pre-piercing is activated". This is mainly developed for 5-axis
cutting, the STOP event will be used just before the cutting start.
6=If no cleaning or pressure release point is specified.

$angle Real The angle of the text

$attrib String The attrib at is was given in the Marking command.

$height Real The text height

$length Real The length of the text

$font String The name of the text font

$txt String The text in Unicode NOTE! This variable is changed from $TEXT

$fonttype Int The type of font. 0=trueType

$x Real The X-coordinate of the center of a box containing the text.

! 85

Example:

(DEFUN text () !
 (WRITE (STRCAT (NTXT) "G0 X" (RTS x)

)

TILT
This function is called if you have 5-axis equipment ant you need to make a movement in the A and B or one of
the axis without any movement in X or Y.

TOOLUP
This function is only used if the machine has a movable Z-axis that can be controlled from the CNC-file (read
more). !
ItÕs called every time the tool should be moved up from cutting position to a specified lift height. A function
named TOOLUP must be included in the postprocessor.
Following variable is available.

$y Real The Y-coordinate of the center of a box containing the text

$a Real The angle in radians of the major axis. If no 5-axis equipment are in use this variable is
always 0.

$b Real The angle in radians of the minor axis. If no 5 axis equipment are in use this variable is
always 0

$reason Int The $reason means following:
2=Rotate the axis for tilted piercing.
3=Rotate the A axis to correct angle before piercing
4: Called from the fotter

$starttan Real Angle of the first cutting direction on the geometry. Note this value is in radians.

$msg String An automatic generated text that describe the reason of Toolup

$fz Real The velocity for the rapid speed in mm/min

$stroke Bool If the pneumatic stroke should be used

$reason Int The reason means following
(0=Called if you have a fixed Z)
1=Initialization in the beginning of the file.
2=Between drillings
3=Between markings
4=Between pre piercings
5=Between cuts in a part
6=Between two parts in cutting
7=After cleaning or pressure educe.

$z Real The lift height in mm. The value is checked against over travel and can't exceed Max
Z-axis movement minus the material thickness and the Standoff.

! 86

Example:

ITS WRONG £mode skulle vara 6 men ger 5

(DEFUN toolup() !
 (IF $sensor (WRITE (STRCAT (NTXT) "M45 (SENSOR OFF, TOOL UP)"))) !
 (COND !
 ($sensor nil) !
 ((= $reason 1) !
 (WRITE (STRCAT (NTXT) "G0 Z" (RTS $z) " (TOOL UP IN BEGINNING OF
FILE)")) !
 ((= $reason 2) !
 (WRITE (STRCAT (NTXT) "G0 Z" (RTS $z) " (TOOL UP BETWEEN DRILLINGS)")) !
 ((= $reason 3) !
 (WRITE (STRCAT (NTXT) "G0 Z" (RTS $z) " (TOOL UP BETWEEN MARKINGS)")) !
 ((= $reason 4) !
 (WRITE (STRCAT (NTXT) "G0 Z" (RTS $z) " (TOOL UP BETWEEN PRE
PIERCINGS)")) !
 ((= $reason 5) !
 (WRITE (STRCAT (NTXT) "G0 Z" (RTS $z) " (TOOL UP BETWEEN CUTS)")) !
 ((= $reason 6) !
 (WRITE (STRCAT (NTXT) "G0 Z" (RTS $z) " (TOOL UP AFTER LAST CUT ON
PART)")) !
) !
)

TOOLDOWN
This function should move the tool down to cutting position.

$zmode Int The $zmode have following meaning.
0=Fixed Z-axis.
1=Automatic, Up/Down controlled by water On/Off.
2=Up/Down with separate M-codes.
3=Up/Down controlled by Z-coordinates.
4=Automatic Height sensor that are controlled by water On/Off.
5=Height sensor that are controlled by M-codes.
6=Height sensor that are controlled by Z-coordinates.
7=By measuring probe information.
If the machine has a pneumatic stroke, then this can be used together with all
options above.

$fz Real The velocity for the rapid speed in mm/min

$initdown Bool This variable is T the first time the TOOLDOWN function is called else nil

$initpartwic
e

Bool This variable can be used only in combination with height sensors and if the sensoring
type is Partwice. The variable is T the first time the TOOLDOWN function is called after
new part has started, else nil.

$initsheetw
ice

Bool This variable can be used only in combination with height sensors and if the sensoring
type is Sheetwice. The variable is T the first time the TOOLDOWN is called else nil.

$msg Strin
g

An automatic generated text that describe the reason of Toolup

! 87

Example

(DEFUN tooldown () !
 (IF $sensor !
 (WRITE (STRCAT (NTXT) "M44 (SENSOR ON, TOOL DOWN)")) !
 (WRITE (STRCAT (NTXT) "G0 Z0")))) !
)

Normally the Z-axis is moved to Z0 or to the same value as the material thickness. The $Z value is a negated $Z
value specified in the last TOOLUP event. !

$reason Int The $reason means following:
The reason means following
1=Initialization in the beginning of the file.
2=Between drillings
3=Between markings
4=Between pre piercings
5=Between cuts in a part
6=Between two parts in cutting
7=Before cleaning or pressure reduce.

$sensordist Real The distance between each measurement when using Stamping sensor. The variable are
used to calculate the time between each measurement and are only used in AWJ-
cutting.

$sensormo
de

Int -1= If no height sensor are in use.
0=Sheetwice. Normal implementation is that the sensor measure the height once at the
start.
1=Partwice. Normal implementation is that the sensor measure the height at every new
part.
2=Dragging. The height sensor are at the material all time.
3=Stamping. The height sensor measures the height periodical. The time between the
measurements are controlled by the variable $sensorsec. See also $sensordist.

$sensorsec Real The time between each measurement when using Stamping sensor. The time is
calculated from the variable $sensordist and the High cutting speed in Normal quality.
This variable is only used in AWJ cutting.

$stroke Bool If the pneumatic stroke should be used

$z Real This value is the same as previous $z that was used to move up the tool.!
If the tools have not been down, then the value is the maximum lift height minus the
thickness of the material.

$zmode Int The $zmode have following meaning.
0=Fixed Z-axis.
1=Automatic, Up/Down controlled by water On/Off.
2=Up/Down with separate M-codes.
3=Up/Down controlled by Z-coordinates.
4=Automatic Height sensor that are controlled by water On/Off.
5=Height sensor that are controlled by M-codes.
6=Height sensor that are controlled by Z-coordinates.
7=By measuring probe information.
If the machine has a pneumatic stroke, then this can be used together with all options
above.

$zref Bool/
Int

This variable is an integer that indicate the closest reference point, measured by the
measure function. If you havenÕt used the measure function, this variable is nil.

! 88

TUBE cutting

About axis names
X and Y is the two major axis of the machine.
Z axis moves the cutting equipment up and down.
A is the primary bevel axis (the axis mounted on the machine)
B is the secondary bevel axis (the axis mounted on the primary axis)
C is the rotation axis of the tube. If (C) then the axis is used only for indexing.
The axis below is describe the axis that can be moved at the same time.

!

No C-axis
No Bevel head

C-axis
No Bevel head

No C-axis
Bevel head

C-axis
Bevel head

Projected cut Using: X,Y,Z
TUBE-3X

Using: X,Y,Z, (C)
TUBE-3X

Using: X,Y,Z
TUBE-3X

Using: X,Y,Z (C)
TUBE-3X

Tube6AxisPrefere
Using: X,Y,Z,A,B,C
TUBE-6X

Projected
Out of center

Using: X,Y,Z
TUBE-3X

Using: X,Y,Z, (C)
TUBE-3X

Using: X,Y,Z
TUBE-3X

Using: X,Y,Z (C)
TUBE-3X

Tube6AxisPrefere
Using: X,Y,Z,A,B,C
TUBE-6X

Projected
with tilt !
(out of center)

Not possible Not possible Using: X,Y,Z,A,B
TUBE-5X

Tube6AxisPrefere
Using: X,Y,Z,A,B,C
TUBE-6X

Using: X,Y,Z,A,B (C)
TUBE-5X

Rotated cut Not possible Using: X,Z,Y,C
TUBE-4X

Using: X,Y,Z,A,B
TUBE-5X

Using: X,Z,Y,C
TUBE-4X

Rotated with
tilt

Not possible Not possible Using: X,Y,Z,A,B
Algorithm: 3
TUBE-5X

Using: X,Y,Z,A,B,C
Algorithm 5
TUBE-6X4

Cutoff Not possible Using: X,Y,Z,C
Algorithm: 1
TUBE-4X

Not possible Using X,Y,Z,C
Algorithm: 1
TUBE-4X

Wrap Not possible Using: X,Y,Z,C
TUBE-4X
Algorithm: 1

Not possible Using: X,Y,Z,C
Algorithm: 1
TUBE 4X

Cut off with
tilt

Not possible Not possible Not possible Using: X,Y,Z,A,B,C
TUBE 6X
Algorithm: 4

! 89

(TUBE-DIST <ang1> <pos1> <ang2> <pos2>)
The function calculates the distance between two points on the tube. If <pos1> is not the same as <pos2>
and the profile is circular then a helical components is added to the distance calculation. If <ang1> is larger
than <ang2> then the distance computation is done counter clockwise, otherwise clockwise. Multiple turns are
supported if the absolute difference between <ang1> and <ang2> is more than 2 PI. This function is used
internally and will probably not be needed in the postprocessor.

TUBE-CHMODE
This function is called before each new cut and describe the type of next cut.

!
TUBE-3X
This function is used to move the jet in 3 axis X, Y and Z. No rotation of the jet will be used in this cutting

TUBE-4X
This function is used to move the jet in 4 axis in same timeC, X, Y and Z.

TUBE-5X
The function is used to move the tool in interpolation up to 5-axis at the same time. The jet is always active
when this function is called, the tube is never moved.

$reason int 1: Next cut will be using TUBE-3X functions!
2: Next cut will be using TUBE-4X functions!
3: Next cut will be using TUBE-5X functions!
4: Next cut will be using TUBE-6X functions

$fe Real The speed as distance/minute if you have tube axis as a linear axis

$fe Real The speed in distance/minute

$ft Real The speed as time for the movement

$x Real The position of the X-axis.

$y Real The position of the Y-axis.

$z Real The position of the Z-axis.

$c Real The rotation angle of the tube in radians.

$fe Real The speed as distance/minute if you have tube axis as a linear axis

$ft Real The speed as time for the movement.

$x Real The position of the X-axis.

$y Real The position of the Y-axis.

$z Real The position of the Z-axis.

$a Real The angle of primary axis of the bevel head in radians.

$ab Bool This variable is nil if no 5-axis information are available else T.

$b Real The angle of the secondary axis of the bevel head in radians.

$fe Real The speed as distance/minute if you have tube axis as a linear axis

! 90

TUBE-X6
The function is used to rotate the tube or (and) move the tool while cutting on the tube. The jet is always
active when the function is called.

TUBE-CUTOFF
The function should be used to turn the jet off.

TUBE-CUTON
The function should be used to turn the jet on. For the moment we are only use start with blind lead.

TUBE-DOWN
The function are called when moving the tool down to a non-flat work piece.

TUBE-RAPID
The function are called when moving the tool in rapid move while cutting on a non-flat work piece

!
TUBE-ROTATE
This function is used to rotate the tube (indexing) to a new position. The cutting is never active and the nozzle
is always away from the tube when this function is called. The speed is always the highest possible.

$ft Real The speed as time for the movement

$x Real The position of the X-axis.

$y Real The position of the Y-axis.

$z Real The position of the Z-axis.

$a Real The angle of primary axis of the bevel head in radians.

$ab Bool This variable is nil if no 5-axis information are available else T.

$b Real The angle of the secondary axis of the bevel head in radians.

$c Real The angle of the tube rotation

$ft Real The speed as time for the movement

$fe Real The speed as distance/minute if you have tube axis as a linear axis

$x Real The position of the X-axis.

$y Real The position of the Y-axis.

$z Real The position of the Z-axis.

$z Real The position of the Z-axis.

$y Real The position of the Y-axis.

$z Real The position of the Z-axis.

$c Real The angle in radians of the rotation major axis. If no 5-axis equipment are in use this
variable is always 0.

! 91

!
TUBE-UP
The function are called when the tool are moving up.

Cutting speed on tube cutting
The cutting speed on tube cutting must be handled in a different way compared with normal shape cutting in X
and Y. The reason is that the tube rotation is usually programmed as a rotation axis in degree per minute and
the other movement is programmed in distance/minute.

!
When you cut the A geometry there is no rotation of the tube, in this case is possible to use distance/minute
programming. When cutting B the only movement is the tube rotation and in this case itÕs possible to use speed
in degree/ minute. The C geometry is a mix of A and B and in this case itÕs not possible to use either speed by
distance/minute or degree/minute.

Invers time feed rate definition
The feed rate should be programmed in invers time and itÕs solves the problem when the numerical control
must mix different methods. The speed is entered as inverse time for the CNC-controller to finish the block.
Since the value can differ al lot between each block itÕs important to enter the value on all block that are
programmed with invers feed rate definition.
FDM=Feed in mm or inches per minute.
D=Path length in mm or inches per minute. !
F= FDM/D
Example:
N200 G93 G1 X100 F2
The time to traverse along the programmed path is 0.5 min. Wanted feed rate is 200mm/min.
200/100=2
The variable $ft can be used in all TUBE functions. The value stored in the variable is the time it should take for
the controller to finish the block. To change this value to invers time just divide 1/time
Example

(DEFUN tube-4X (/ ivt) !
 (SETQ ivt (/ 1 $ft))!
 (WRITE (STRCAT "G1 X" (RTS $x) " Y" (RTS $y) " Z" (RTS $z) " C" (ATS $c) " F" (RTOS ivt
4))) !
)

The invers time feed rate definition method may not be supported on all CNC-controller and it may have
different G-codes. In many controllers this function can be activated by the G-code G93.

$z Real The position of the Z-axis.

! 92

Specify the tube axis as a linear axis
If your CNC-controller does not support invers time feed rate definition than you can set up the tube axis as a
linear axis. In this case one lap on the tube axis is the same as moving the linear axis 360 mm. If you have
another ratio this must be specified in the postprocessor. This can be done by including following line in the
beginning of the postprocessor.
Example:

(SETQ *TubeLap* 100.0) !
!
(DEFUN tube-rotate () !
 (WRITE (STRCAT "G1 C" (RTS 100.0) " F" (RTF $fe))) !
)

If you do like this the IGEMS will calculate all cutting speeds and itÕs possible to use the normal method
(distance/minute) of handling the cutting speed.

! 93

Other postprocessor functions

(HMZ <2D-point> [<to-point>])
The function will return a list with X, Y and Z coordinates and a tool vector.

(HMZ (LIST 100 100)) returns ((100 100 2.0) (0 0 -1))

If you enter two points than you will have a list of list of points and vectors

(HMZ (LIST x y) (LIST x y)) returns (((x y z)(xv yv zv)) ((x y z) (xv yv
zv)) ((x y z) (xv yv zv)))

The accuracy number of points are depending of the accuracy of the height map. !
(HMZARC <startpoint> <midpoint> <endpoint> <acc>)
The function will take the information from a circular movement and returns a list of X,Y and Z coordinates and
a tool vector. The accuracy is always in metric.

(HMZARC <startp> <midp> <endp> 0.1) returns (((x y z)(xv yv zv)) ((x y z)
(xv yv zv)) ((x y z) (xv yv zv)))

(CIRCULARPIERCINGTIME)
This function will calculate the circular piercing time by using a formula based on material properties and
cutting parameters. !

! 94

Interfacing ILIPS with a .NET language
A brief introduction to interfacing ILISP with a .NET language
It is possible to call a function written in a .NET language from ILISP. This is done by giving a function the
attribute: LispSharp("LISPNAME"), where lispname is the function name from lisp.
The following steps are needed to create a complete lisp function in C#:
1. Create a new project for a class library assembly in Visual Studio
2. Create a public static class, containing a public static function decorated with the LispSharp attribute
3. Implement the function as needed and return a .NET value casted to an object:
null is used to return nil
double are used to return floating point numbers
TypeT.T is used to return T (true Booleans are not used and does not exist in lisp)
Any other object can be returned as wished, but for example float wonÕt be recognized as a floating point
number in the lisp engine
4. In a lisp app, do (LOAD "mylispdll.dll") to load the assembly IGEMS, where after the function(s) is available !
Here is an implementaion of function MULT that multiplies two numbers in c#:
 [LispSharp("MULT")]!
 public static object MyMultFunc(LispEngine L, Cons args)!
 {!
 double a = 0.0, b = 0.0;!
 L.GetNumberArg(ref args, ref a); // fetch first argument!
 L.GetNumberArg(ref args, ref b); // fetch second argument!
 L.CheckArgSentinel(args); // throw an error if there are more arguments!
 return (object)(a * b);!
 }!
The class LispEngine has many utility functions for managing lisp lists as well as fetching arguments etc.
The most important ones, normally needed, is the Get...Arg(ref args, ref obj)
The class Cons is a standard LISP S-Expression, containing a CAR and a CDR as specified in any lisp internals
documentation.
The object pointed to by CAR is in the ILISP case a general .NET object.

! 95

